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Abstract

In many applications in statistics and machine learning, the availability of data samples from multiple
possibly heterogeneous sources has become increasingly prevalent. On the other hand, in distributionally
robust optimization, we seek data-driven decisions which perform well under the most adverse distribution
from a nominal distribution constructed from data samples within a certain discrepancy of probability
distributions. However, it remains unclear how to achieve such distributional robustness in model learning
and estimation when data samples from multiple sources are available. In this work, we propose construct-
ing the nominal distribution in optimal transport-based distributionally robust optimization problems
through the notion of Wasserstein barycenter as an aggregation of data samples from multiple sources.
Under specific choices of the loss function, the proposed formulation admits a tractable reformulation
as a finite convex program, with powerful finite-sample and asymptotic guarantees. As an illustrative
example, we demonstrate with the problem of distributionally robust sparse inverse covariance matrix
estimation for zero-mean Gaussian random vectors that our proposed scheme outperforms other widely
used estimators in both the low- and high-dimensional regimes.

1 Introduction

In various statistical and machine learning applications, data samples are collected from multiple sources,
which can be viewed as samples drawn from multiple data distributions. A notable example is federated
learning (Kairouz et al., 2021; McMahan et al., 2017), in which many users collaboratively learn a common
model but the samples collected by the clients might have highly heterogeneous distributions. This distribution
heterogeneity leads to difficulty in building a robust model in two aspects: (i) how to aggregate estimations
of the distributions with data samples from these sources; (ii) how to perform robust estimation with this
data aggregation given distributional uncertainty.

In practice, the first issue is usually dealt with by simply taking a simple (weighted) average of the
distribution estimates, whereas the second one is tackled by minimizing the weighted aggregate loss with
possibly different weights. However, the mixture distribution constructed from the weighted average of
distributions does not take into account the geometric structure of data samples, thus failing to well summarize
the characteristics from all sources. In this work, we consider the notion of barycenter (a.k.a. Fréchet mean)
in the space of probability distributions endowed with the Wasserstein distance, called Wasserstein barycenter
(Agueh and Carlier, 2011), which is a nonlinear interpolation between distributions.

To perform robust estimation of models against distributional uncertainty, distributionally robust opti-
mization (DRO; Delage and Ye, 2010; Goh and Sim, 2010; Wiesemann et al., 2014) has been shown to be a
powerful modeling framework, which has aroused much attention in the machine learning community lately
attributed to its connections to generalization, regularization and robustness.
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Contributions. We thus propose a unified approach to overcome these two aspects of difficulty. We first
construct an aggregate distribution of multiple data distributions through Wasserstein barycenter, followed by
using it to define an ambiguity set in a DRO problem, which is a family of distributions lying within a certain
Wasserstein distance from this Wasserstein barycenter, coined the Wasserstein barycentric ambiguity set. We
hence introduce Wasserstein Barycentric DRO (WBDRO) as a general aggregate data-driven decision making
framework with distributional robustness against uncertainty arising in multiple possibly heterogeneous
unknown true distributions.

We establish finite-sample guarantees and asymptotic consistency results for WBDRO. We also consider
an approximation of the Wasserstein ambiguity set by characterizing it using only the first two moments of
the family of distributions and those of the nominal distribution, called the Gelbrich ambiguity set. We further
extend this construction in the case of multiple nominal distributions using the 2-Wasserstein barycenter. We
also exemplify WBDRO through distributionally robust maximum likelihood estimation for sparse inverse
covariance matrices of zero-mean Gaussian random vectors, which numerically outperforms other widely-used
estimators.

1.1 Related Work

Distributionally Robust Optimization. As a powerful modeling framework, DRO has recently found a
wide range of applications in statistics and machine learning (Bertsimas and Van Parys, 2022; Blanchet
et al., 2019a; Duchi and Namkoong, 2021; Duchi et al., 2021; Li et al., 2021; Nguyen et al., 2021b, 2022;
Shafieezadeh-Abadeh et al., 2015, 2019; Taskesen et al., 2021b), signal processing (Shafieezadeh-Abadeh et al.,
2018), portfolio selection and maximization (Blanchet et al., 2021a; Nguyen et al., 2021a,c; Ob lój and Wiesel,
2021), etc. One key component of DRO is the choice of data-driven ambiguity sets, which can be defined
through f -divergence (Ben-Tal et al., 2013; Duchi and Namkoong, 2021; Duchi et al., 2021), Wasserstein
distance (Blanchet et al., 2019b; Gao, 2020; Gao and Kleywegt, 2016; Gao et al., 2017; Pflug and Wozabal,
2007), generalized moment constraints (Bertsimas et al., 2018; Delage and Ye, 2010; Goh and Sim, 2010;
Wiesemann et al., 2014), maximum mean discrepancy (MMD; Staib and Jegelka, 2019), etc. Tractable
reformulation as finite convex programs are available for DRO problems with these different ambiguity sets.
We refer to Carmon and Hausler (2022); Haddadpour et al. (2022); Jin et al. (2021); Levy et al. (2020); Li
et al. (2021); Yu et al. (2022) for recent advances in the computational perspectives of DRO, and Zhen et al.
(2021) for a review of the mathematical foundations of DRO.

Notion of Mean Distributions. Fréchet mean or barycenter in different metric spaces, as a notion of
mean distributions, has long been a central object in statistical analysis. Notably, a (weighted) average of
distributions on Rd is a barycenter in Euclidean space. The Wasserstein barycenter (Agueh and Carlier,
2011; Kroshnin, 2018) is a more appropriate notion of mean distributions since the geometric structure of the
distributions can be considered (see e.g., Backhoff-Veraguas et al., 2018). This notion has already appeared
in various applications in statistics and machine learning (Backhoff-Veraguas et al., 2018; Bigot et al., 2019b;
Bishop, 2014; Bishop and Doucet, 2021; Schmitz et al., 2018; Srivastava et al., 2018; Yang and Tabak, 2021).
In particular, the work Álvarez-Esteban et al. (2018) shares similar motivation to ours, which is to perform
consensus-based estimation combining several estimations of probability distributions.

Learning with Data from Multiple Sources. Modern machine learning applications involve the use of data
collected from multiple sources. Such examples include federated learning (Kairouz et al., 2021; McMahan
et al., 2017; Wang et al., 2021a), (multiple-source) domain adaptation (Mansour et al., 2021; Zhang et al.,
2021), information fusion and network consensus (Bishop, 2014; Bishop and Doucet, 2021). However, the
consensus problem indeed has a much longer history (see e.g., DeGroot, 1974).

A more detailed discussion on other related prior work can be found in Appendix A.

2 Preliminaries

Notation. We denote by Id ∈ Rd×d the d× d identity matrix and 1d ∈ Rd the d-dimensional all-one vector.
The subscripts for dimensions are suppressed if they are clear from context. We define JnK := {1, . . . , n} for
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n ∈ N∗. Let Sd
++ (resp. Sd

+) denote the set of symmetric positive (resp. semi-)definite matrices. P(X) is the
set of Borel probability measures over the Polish space X, Pk(X) is the set of probability measures over X

with finite k-order moments, and Pac
k (X) is the set of absolutely continuous probability measures over X

(w.r.t. the Lebesgue measure) with finite k-order moments. The set △d := {p ∈ [0,+∞)d : ⟨p,1d⟩ = 1} is
the (d− 1)-dimensional probability simplex, where ⟨·, ·⟩ is the usual inner product. We denote by N(µ,Σ) a
Gaussian distribution with mean µ ∈ Rd and covariance matrix Σ ∈ Sd

+, and δx a Dirac measure at point
x ∈ X.

Optimal Transport. We introduce several notions from optimal transport (OT) used throughout the whole
paper, which can be found in various monographs on the subject (Ambrosio et al., 2021; Figalli and Glaudo,
2021; Peyré and Cuturi, 2019; Santambrogio, 2015; Villani, 2003, 2009). We also refer to Panaretos and Zemel
(2019, 2020); Peyré and Cuturi (2019) for comprehensive reviews of recent advances of optimal transport
in machine learning and statistics. Let Ω ⊆ Rm be a closed convex set. For p ∈ [1,+∞), the p-Wasserstein
distance between two probability measures ρ, ν ∈ Pp(Ω) is defined by

Wp(ρ, ν) :=

(
inf

π∈Π(ρ,ν)

∫
Ω×Ω

∥x− y∥p dπ(x, y)

)1/p
, (2.1)

where ∥·∥ is the Euclidean norm on Rm, and Π(ρ, ν) denotes the set of joint distributions on Rm × Rm with
ρ and ν as marginals. The p-Wasserstein distance is a distance on the space Pp(Ω) (see e.g., Figalli and
Glaudo, 2021, Theorem 3.1.5). We call the metric space Wp(Ω) := (Pp(Ω),Wp) the p-Wasserstein space
(Ambrosio et al., 2005).

The notion of Wasserstein barycenter (Agueh and Carlier, 2011) can be viewed as the mean of probability
distributions in the Wasserstein space. For p ∈ [1,+∞), the p-Wasserstein barycenter of P ∈ Wp(Pp(Ω)) is
defined by

bp(P) := argmin
ν∈Pp(Rm)

Eρ∼P

[
Wp

p(ν, ρ)
]
, (2.2)

where ρ ∈ Pp(Ω) is a random measure with distribution P. If we take P =
∑K

k=1 λkδρk
in (2.2), where

λ = (λk)k∈JKK ∈ △K , we recover the λ-weighted empirical p-Wasserstein barycenter, defined by

b̂λ,p(ρ1, . . . , ρK) := argmin
ν∈Pp(Rm)

K∑
k=1

λkW
p
p(ν, ρk).

Thus, we use the term p-Wasserstein barycenter to refer to both empirical and population p-Wasserstein
barycenters whenever it is clear from context. Note that Wasserstein barycenters do not always exist, and
might not be unique if exist. Technical conditions for their existence and uniqueness are studied in e.g.,
Agueh and Carlier (2011); Le Gouic and Loubes (2017).

Distributionally Robust Optimization. In DRO, we investigate a learning problem under distributional
uncertainty which is casted as a generic expected loss minimization framework. The loss function ℓ : Rm →
R := R ∪ {±∞} is a function of the the uncertainty vector ξ ∈ Rm whose distribution P is supported on
Ξ ⊆ Rm. The risk (or expected loss) of a decision ℓ ∈ L is defined as

RP(ℓ) := Eξ∼P[ℓ(ξ)],

where L is the set of all admissible loss functions. The optimal risk is then defined as the infimum of the risk
over L. However, P is often unknown in practice except for some limited statistical and structural information
about it. We thus assume that P is known to lie in an ambiguity set Uε(P̂), which is a ball of radius ε ⩾ 0 in

P(Ξ) centered at the nominal distribution P̂ in some discrepancy between probability distributions. We can
then define the worst-case risk of ℓ ∈ L by

R
Uε(P̂)(ℓ) := sup

P∈Uε(P̂)

RP(ℓ). (2.3)
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Such a nominal distribution P̂ is usually constructed from a set of observed data D := {zi}ni=1 ⊂ Rm, e.g.,
its empirical measure 1

n

∑n
i=1 δzi . The distributionally robust optimization (DRO) problem seeks decisions

achieving the optimal worst-case risk

R
Uε(P̂)(L) := inf

ℓ∈L
R

Uε(P̂)(ℓ). (2.4)

Remark 2.1. Note that if the loss function is parameterized by the decision x ∈ X ⊆ Rd, i.e., ℓ : X× Rm → R,
then the risk can be defined in terms of x as RP(x) := Eξ∼P[ℓ(x, ξ)]. The worst-case risk and the worst-case
optimal risk can be defined similarly.

In this paper, we consider the ambiguity set defined via the p-Wasserstein distance. Then, the p-Wasserstein
ambiguity set is defined by

Wε,p(P̂) := {Q ∈ Pp(Ξ) : Wp(Q, P̂) ⩽ ε},
where Ξ ⊆ Rm is a closed set which is known to contain the support of the unknown true distribution P⋆ and
ε ⩾ 0. Such a DRO formulation is called the Wasserstein DRO (WDRO).

3 Learning with Aggregation of Multiple Distributions

Problem Formulation. In different centralized model learning scenarios with data from multiple sources, such
as federated learning, the learning objective can usually be casted as a stochastic composition optimization
problem (see e.g., Wang et al., 2021a; Yuan et al., 2022):

minimize
x∈X

F (x) := Ek∼D[fk(x)], where fk(x) := Eξ∼Pk
[ℓ(x, ξ)], (3.1)

where x ∈ X is the parameter of the global model for some closed convex set X ⊆ Rd, ξ ∈ Ξ is a random vector
representing an input-output pair for some sample space ⊆ Rm, fk : Rd → R is the local objective function
of the kth source, Pk is the distribution associated to the kth source, and D is a distribution supported on
the set of sources K. Assuming there is only a finite number of K sources, i.e., K = JKK, then the objective

in (3.1) can be written as Fλ(x) :=
∑K

k=1 λkfk(x), where D is taken to be a categorical distribution with
probabilities λ = (λk)k∈JKK ∈ △K .

Usually, each data source k has a finite number of local samples, denoted by Dk = (zk,1, . . . , zk,nk
),

where nk is the sample size of the kth source and N :=
∑K

k=1 nk. Using their empirical distributions

P̂k := 1
nk

∑nk

i=1 δzk,i
, with f̂k(x) := Eξ∼P̂k

[ℓ(x, ξ)], we usually solve the following empirical risk minimization

(ERM) problem in practice:

minimize
x∈X

F̂λ(x) :=

K∑
k=1

λkf̂k(x) =

K∑
k=1

λk

nk

nk∑
i=1

ℓ(x, zk,i), (3.2)

Note that λ is usually taken as the uniform distribution over the numbers of samples from the sources, i.e.,
λk = nk/N , so that the ERM objective (3.2) is amount to an ERM objective with the union of all the local
data samples.

However, as argued by Mohri et al. (2019); Ro et al. (2021), this choice of the uniform distribution is
questionable since there is often a mismatch between the target distribution (for which the centralized model

is learned) and the mixture distribution
∑K

k=1 nkPk/N . Instead, the target distribution is better expressed

as a λ-mixture of P1, . . . ,PK , i.e., Pλ :=
∑K

k=1 λkPk for some λ ∈ △K . Then, with the λ-mixture of the

empirical distributions P̂λ :=
∑K

k=1 λkP̂k =
∑K

k=1
λk

nk

∑nk

i=1 δzk,i
, it is not hard to see that the objective in

(3.2) is equivalent to Eξ∼P̂λ
[ℓ(x, ξ)].

Stochastic Barycentric Optimization. Let us recall that Pλ is the λ-weighted Euclidean barycenter of the
distributions P1, . . . ,PK . Leveraging this important fact, we consider more generally a λ-weighted barycenter
b̂λ(P1, . . . ,PK) of P1, . . . ,PK defined via some discrepancy between distributions such as the Wasserstein
distance, so that (3.1) can be formulated with the objective

F b
λ(x) := Eξ∼b̂λ(P1,...,PK)[ℓ(x, ξ)],
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which we refer to as a stochastic barycentric optimization (SBO) problem. With the data samples D1, . . . ,DK ,

we also have its surrogate objective defined with the empirical distributions P̂1, . . . , P̂K , given by

F̂ b
λ(x) := Eξ∼b̂λ(P̂1,...,P̂K)[ℓ(x, ξ)].

Unfortunately, except for the case of the Euclidean barycenter, F̂ b
λ usually cannot be expressed as a finite

sum. This appears to be unfavorable computationally compared to (3.2). To solve it computationally, one
can resort to ERM by drawing samples from the barycenter of empirical distributions. However, solving such
an ERM problem requires (i) the computation of a barycenter; and (ii) sampling from such a barycenter.
In the case of the Wasserstein barycenter, these tasks could be computationally intensive (Altschuler and
Boix-Adserà, 2022) or not well addressed until recently (Daaloul et al., 2021). However, the choice of the
Wasserstein barycenter over the Euclidean barycenter in SBO is justified in the sense that the Euclidean
barycenter usually fails to take into account the underlying geometry of these distributions (see e.g., Backhoff-
Veraguas et al., 2018). Thus, despite the potential computational obstacles, we specifically consider the
Wasserstein barycenter (and possibly its entropic-regularized variants). We also provide further discussion on
the connections of this formulation to other related machine learning paradigms in Appendix A.

4 Wasserstein Barycentric Distributionally Robust Optimization

Although the use of the Wasserstein barycenter might give a better consensus representation of samples from
different sources, discrepancy between the target distribution and the Wasserstein barycenter of the empirical
distributions might still arise, due to e.g., sampling errors and data heterogeneity across the sources. In a
similar spirit to the single-source case, we propose to hedge against the impact of such model misspecification
through the lens of WDRO.

Wasserstein Ambiguity Sets with Wasserstein Barycenters. Suppose that we have a finite number of K
data sources with probability distributions Q1, . . . ,QK respectively. Aside from directly considering the notion
of Wasserstein barycenters, one way to construct an ambiguity set out of these K probability distributions
is to consider the intersection of the individual Wasserstein ambiguity sets

⋂K
k=1 Wε,p(Qk), but if the data

sources are very heterogeneous then this could lead to an overly conservative ambiguity set using the same
large ε. Alternatively, a less conservative ambiguity set based on these K distributions can be defined by

W̃ε,p(Q1, . . . ,QK ;λ) :=

{
P ∈ Pp(Ξ) :

K∑
k=1

λkW
p
p(P,Qk) ⩽ εp

}
. (4.1)

It is straightforward to observe that
⋂K

k=1 Wε,p(Qk) ⊆ W̃ε,p(Q1, . . . ,QK ;λ) for any λ ∈ △K . In the following,
we illustrate that how the ambiguity set (4.1) is related to another ambiguity set defined with the λ-weighted
p-Wasserstein barycenter of Q1, . . . ,QK .

Definition 4.1 (Wasserstein barycentric ambiguity set). For λ ∈ △K , the p-Wasserstein barycentric
ambiguity set with radius ε ⩾ 0 centered at a λ-weighted p-Wasserstein barycenter of Q1, . . . ,QK (if exists),

denoted by Qλ,p := b̂λ,p(Q1, . . . ,QK), is defined by

Wε,p(Q1, . . . ,QK ;λ) :=
{

P ∈ Pp(Ξ) : Wp(P,Qλ,p) ⩽ ε
}
. (4.2)

Note that Wε,p(Q1, . . . ,QK ;λ) = Wε,p(Qλ,p). The ambiguity sets (4.1) and (4.2) of different radii (differed
by a factor of 2p) can be related by the following inclusion.

Theorem 4.2. For λ ∈ △K , suppose that a λ-weighted p-Wasserstein barycenter of Q1, . . . ,QK exists. Then,
for any ε ⩾ 0, the following inclusion of the ambiguity sets (4.1) and (4.2) of different radii holds:

W̃ε,p(Q1, . . . ,QK ;λ) ⊆ W2p·ε,p(Q1, . . . ,QK ;λ). (4.3)
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All proofs of this paper are deferred to Appendix C. Consequently, it is more feasible to use the Wasserstein
barycentric ambiguity set (4.2) since ε is often tuned in practice. We can therefore apply existing results of
WDRO if the Wasserstein barycenter Qλ exists and is available, without the need of redeveloping tools to
handle the ambiguity set (4.1).

Remark 4.3. The overall rationale of the construction of (4.2) is that the most adverse distribution should
be close to a population p-Wasserstein barycenter b⋆ := bp(P⋆) ∈ Pp(Ξ) of the unknown true distribution
(of distributions) P⋆ ∈ Wp(Pp(Ξ)) within a radius ε in Wp distance. This population barycenter can be
approximated by its empirical counterpart (see Section 4.1 for details). This is as opposed to the usual WDRO
in which the most adverse distribution is close to the unknown true distribution P⋆ ∈ Pp(Ξ) approximated

by a nominal (empirical) distribution P̂.

We now revisit the WDRO problem (2.4) with K available nominal distributions P̂ = (P̂1, . . . , P̂K) and the

Wasserstein barycentric ambiguity set Uε(P̂) = Wε,p(P̂;λ), which we refer to as the Wasserstein barycentric
DRO (WBDRO). Consequently, due to the definition of the Wasserstein barycentric ambiguity set (4.2),

solving a WBDRO involves two consecutive steps: (i) computing a Wasserstein barycenter b̂λ,p(P̂1, . . . , P̂K);
(ii) solving a WDRO problem. Such a problem decomposition enables us to leverage existing theoretical
results and computational tools for Wasserstein barycenters (e.g., Álvarez-Esteban et al., 2016; Carlier et al.,
2015; Chewi et al., 2020; Heinemann et al., 2022) and WDRO (e.g., Blanchet et al., 2021d) respectively.

In the original WDRO formulation (2.4), we usually observe some i.i.d. realizations D := {zi}ni=1 of the

unknown true distribution P⋆, from which we can construct a nominal distribution P̂n, e.g., the empirical
distribution P̂n = 1

n

∑n
i=1 δzi . However, in WBDRO, the way of constructing the K nominal distributions

P̂1, . . . , P̂K as approximations of their corresponding unknown true distributions P⋆
1, . . . ,P

⋆
K becomes more

subtle. For instance, they can be constructed from the same set of observed data Dn via resampling techniques
such as bootstrap (requiring K ⩽ n), or from K different sources where the observed data at the kth source
Dk = {zi,k}ni=1 are i.i.d. realizations of its unknown true distribution P⋆

k (assuming the same sample size n
for simplicity). The former scenario is often used to avoid overfitting, while the latter is often encountered
in the setting of federated learning with possibly heterogeneous data sources. Again, for each k ∈ JKK, the

nominal distributions P̂n
k can be taken as the empirical distributions. Note that P̂n

k converges to P⋆
k in Wp

distance as n → ∞ (see e.g., Bolley et al., 2007; Fournier and Guillin, 2015).
Under this construction, we are interested in statistical properties of WBDRO in the following two case:

(i) n → ∞ with fixed and finite K; (ii) K → ∞ with fixed and finite n. We argue that both cases are well
motivated by the two statistical frameworks with applications discussed in Boissard et al. (2015); Le Gouic
and Loubes (2017).

4.1 Two Statistical Paradigms

Asymptotic Sample Size. Under this paradigm, there are K unknown true distributions P⋆
1, . . . ,P

⋆
K ∈ Pp(Ξ),

where K ∈ N∗ is finite and fixed. These are approximated by a sequence of distributions constructed from
data samples, e.g., the empirical measures P̂n

k := 1
n

∑n
i=1 δzi,k , k ∈ JKK. A crucial result in this case is

that, for λ ∈ △K , a p-Wasserstein barycenter of ρ̂nλ :=
∑K

k=1 λkδP̂n
k

(if exists) converges to a p-Wasserstein

barycenter of the limit ρλ :=
∑K

k=1 λkδP̂⋆
k

in Wp distance as n → ∞, by Le Gouic and Loubes (2017, Theorem

3).

Asymptotic Number of Data Sources. For now, we consider the case where the unknown true distribution
P⋆ ∈ Wp(Pp(Ξ)) is approximated by a growing discrete distribution ρK supported on K elements, with
K → ∞. Consider a sequence of K distributions Pk ∈ Pp(Ξ) with weights λK

k ⩾ 0 for each k ∈ JKK,
from which we define the sequence of distributions by ρK :=

∑K
k=1 λ

K
k δPk

, where K ∈ N∗. Assume that ρK
converges to some distribution P⋆ in Wp distance. Then the p-Wasserstein barycenter of ρK converges to the
p-Wasserstein barycenter of P⋆ in Wp distance as K → ∞, by Le Gouic and Loubes (2017, Theorem 3).

Remark 4.4. The case of n and K both growing to infinity is even more of interest to our case. Indeed, since
P̂n
k → P⋆

k in Wp distance as n → ∞, for each k ∈ JKK, using the above argument with Pk replaced by P⋆
k for

each k ∈ JKK, the p-Wasserstein barycenter of
∑K

k=1 λ
K
k δP⋆

k
converges to the p-Wasserstein barycenter of P⋆

in Wp distance as K → ∞.
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Remark 4.5. Under some more specific frameworks, e.g., in deformation models (Allassonnière et al.,

2007, 2013), the 2-Wasserstein barycenter of P̂1, . . . , P̂K is a consistent estimate of P⋆, in the sense that

b̂1/K,2(P̂1, . . . , P̂K) → P⋆ as K → ∞ in W2 distance. In the case with empirical observations available, as

both n → ∞ and K → ∞, ρ̂n,K := 1
K

∑K
k=1 δP̂n

k
→ P⋆ in W2 distance. We refer to Boissard et al. (2015,

Theorem 4.2 and Proposition 5.1) and Bigot and Klein (2018); Zemel and Panaretos (2019) for details.

4.2 Performance Guarantees

We now study the implications of the two statistical paradigms in Section 4.1 on performance guarantees of
WBDRO. To simplify discussion, we only consider the case of p = 2 and equal weights, i.e., λk = 1/K for each
k ∈ JKK. To simplify discussion, we also assume that all 2-Wasserstein barycenters exist (subject to some

technical regularity conditions). In this subsection, with slight abuse of notation, we write P̂ = (P̂k)k∈JKK,

P̂n = (P̂n
k )k∈JKK, and P̂⋆ = (P̂⋆

k)k∈JKK.
The finite-sample guarantees of WBDRO are derived by the rates of convergence of Wasserstein barycenters

(Ahidar-Coutrix et al., 2020; Le Gouic et al., 2021; Schötz, 2019), characterized by measure concentration of

the 2-Wasserstein barycenter of the nominal distributions P̂n
1 , . . . , P̂

n
K .

With data samples Dn,k = {zi,k}ni=1 for each k ∈ JKK, let ρ̂n,K := 1
K

∑K
k=1 δP̂n

k
where P̂n

k := 1
n

∑n
i=1 δzi,k .

For now, we let K ∈ N∗ be finite and fixed. The following measure concentration result simplified from Le Gouic
et al. (2021, Theorem 12) states that the 2-Wasserstein barycenter of sub-Gaussian ρ̂⋆K := 1

K

∑K
k=1 δP̂⋆

k
should

be contained in the 2-Wasserstein barycentric ambiguity set centered at the 2-Wasserstein barycenter of ρ̂n,K
in WBDRO with high probability.

Theorem 4.6 (Concentration inequality). Let K ∈ N∗ be finite and fixed. Suppose that ρ̂⋆K ∈ W2(P2(Ξ))

is sub-Gaussian with 2-Wasserstein barycenter b̂⋆K := b2(ρ̂⋆K) = b̂1/K,2(P̂⋆) ∈ P2(Ξ). Then b̂⋆K is unique
and there exist constants (c1, c2) ∈ (0,+∞)2 independent of n such that for any β ∈ (0, 1), the concentration
inequality

Pn
{
b̂⋆K ∈ Wε,2(P̂n;1/K)

}
⩾ 1 − β − e−c2n

holds whenever ε exceeds

εn(β) =

√
c1
n

log

(
2

β

)
. (4.4)

Theorem 4.6 indicates that any 2-Wasserstein barycentric ambiguity set Wε(P̂n;1/K) with radius ε ⩾ εn(β)

represents an approximate (1 − β)-confidence region for b̂⋆K , which is a K-sample approximation of the
2-Wasserstein barycenter of the unknown true distribution P⋆.

Note that the distributional uncertainty radius εn(β) decays as O(n−1/2). Therefore, there is no curse of
dimensionality in the uncertainty dimension m when choosing the distributional uncertainty radius εn(β), as
opposed to the case of WDRO (see Kuhn et al., 2019, §3 and Shafieezadeh-Abadeh et al., 2019, Remark 37).

From Theorem 4.6, we can immediately derive the following finite-sample guarantee.

Theorem 4.7 (Finite-sample guarantee). Suppose that all conditions of Theorem 4.6 hold with εn(β) defined
in (4.4). Then for all β ∈ (0, 1) and ε ⩾ εn(β), we have

Pn
{

(∀ℓ ∈ L) Rb̂⋆K
(ℓ) ⩽ R

Wε,2(P̂n;1/K)(ℓ)
}
⩾ 1 − β − e−c2n.

Theorem 4.7 asserts that the worst-case risk provides an upper confidence bound on the approximate
true risk under the 2-Wasserstein barycenter of the unknown true distribution P⋆ uniformly across all loss
functions ℓ ∈ L. In particular, if we take ℓ to be an optimizer of R

Wε,2(P̂n;1/K), then this result implies that

the optimal value of WBDRO provides an upper confidence bound on the out-of-sample performance of its
optimizers.

When K is fixed and finite, we recall that εn → 0 as n → ∞. We can then derive asymptotic consistency
of WBDRO in the sample size n, which asserts that the solution of WBDRO converges to the worst-case
optimal risk under b̂⋆K with a suitably chosen β = βn → 0 decaying to 0 as n → ∞. On the other hand, let
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us also recall the 2-Wasserstein barycenter b̂1/K,2(P̂⋆) converges to a 2-Wasserstein barycenter b2(P⋆) of the
unknown true distribution P⋆ ∈ W2(P2(Ξ)) in W2 distance as K → ∞. Using this fact, we can also derive
the asymptotic consistency of WBDRO in the number of data sources K.

Theorem 4.8 (Asymptotic consistency). Suppose that all conditions of Theorem 4.6 hold. If K ∈ N∗ is
finite and fixed, we can choose βn ∈ (0, 1) and εn = εn(βn) given in (4.4), n ∈ N∗, satisfying

∑∞
n=1 βn < ∞

and limn→∞ εn(βn) = 0. If ℓ is upper semicontinuous and there exists C > 0 such that |ℓ(ξ)| ⩽ C(1 + ∥ξ∥2)
for all ℓ ∈ L and ξ ∈ Ξ, then we have for P∞-almost surely, as n → ∞,

R
Wεn(βn),2(P̂n;1/K)(L) → Rb̂⋆K

(L).

Furthermore, suppose that P⋆ is sub-Gaussian with 2-Wasserstein barycenter b⋆ := b2(P⋆). If we choose
γK ∈ (0, 1) and ωK =

√
c3 log(2/γK)/K with c3 > 0 independent of K satisfying

∑∞
K=1 γK < ∞ and

limK→∞ ωK(γK) = 0, then we have for P∞-almost surely, Rb̂⋆K
(L) → Rb⋆(L) as K → ∞.

The second part of Theorem 4.8 implies that, if b̂⋆K (or P̂⋆) is available, the solution of WBDRO converges
to the worst-case optimal risk under b⋆ with a suitably chosen γK decaying to 0 as K → ∞.

5 Gelbrich Ambiguity Set with 2-Wasserstein Barycenter

In WDRO, more precise structural assumptions about the nominal distribution P̂ can be made, e.g., it belongs
to some family of distributions. In this section, we consider the case of P̂ ∈ P2(Rm) with mean µ̂ ∈ Rm

and covariance matrix Σ̂ ∈ Sm
+ . While computing the Wasserstein distance between any two distributions is

NP-hard in general (Taskesen et al., 2021a), an analytical lower bound of their W2 distance is indeed given
by the Gelbrich distance (Gelbrich, 1990), which only involves their first two moments.

Definition 5.1 (Gelbrich distance). For any P1,P2 ∈ P2(Rm) with means µ1, µ2 ∈ Rm and covariance
matrices Σ1,Σ2 ∈ Sm

++, their Gelbrich distance is defined through

G((µ1,Σ1), (µ2,Σ2)) :=

√
∥µ1 − µ2∥22 + B2(Σ1,Σ2),

where B2(Σ1,Σ2) := tr(Σ1) + tr(Σ2) − 2 tr
(

Σ
1/2
1 Σ2Σ

1/2
1

)1/2
(5.1)

is the squared Bures–Wasserstein distance (Bhatia et al., 2019).

For any P1,P2 ∈ P2(Rm), the Gelbrich bound (Gelbrich, 1990):

W2(P1,P2) ⩾ G((µ1,Σ1), (µ2,Σ2))

holds, where equality holds if P1,P2 belongs to the same location-scatter family F(P0) for some P0 ∈ Pac
2 (Rm),

which is defined as follows.

Definition 5.2 (Location-scatter family). Let X0 ∈ Rm be a random vector with Law(X0) = P0 ∈ Pac
2 (Rm).

The set F(P0) := {Law(AX0 + b) : A ∈ Sm
++, b ∈ Rm} of probability distributions induced by positive definite

affine transformations from P0 is called a location-scatter family. Notably, location-scatter families encompass
the Gaussian and elliptical distributions (see e.g., Muzellec and Cuturi, 2018).

We then define the mean-covariance ambiguity set (Kuhn et al., 2019; Nguyen et al., 2021a) as a ball

centered at (µ̂, Σ̂) with radius ε ⩾ 0 in terms of the Gelbrich distance by Vε(µ̂, Σ̂) := {(µ,Σ) ∈ Rm × Sm
+ :

G((µ,Σ), (µ̂, Σ̂)) ⩽ ε}. Next, we define the Gelbrich ambiguity set (Kuhn et al., 2019; Nguyen et al., 2021a,b),

which is the preimage of Vε(µ̂, Σ̂) under the mean-covariance projection, through

Gε(µ̂, Σ̂) :=
{

Q ∈ P2(Ξ) : (EQ[ξ],VarQ(ξ)) ∈ Vε(µ̂, Σ̂)
}
. (5.2)
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Now we consider the setting of Section 4 with p = 2, and that all Qk’s belong to the same location-scatter
family. The 2-Wasserstein barycenter Qλ,2 also belongs to the same location-scatter family (Álvarez-Esteban
et al., 2018, see Proposition B.7 for details).

Note that we can recover the Gelbrich ambiguity set centered at Qλ,2 if we impose further distributional
restrictions on the 2-Wasserstein barycentric ambiguity set.

Proposition 5.3. Let P0 ∈ Pac
2 (Rm) and Q1, . . . ,QK ∈ F(P0) with means µ1, . . . , µK ∈ Rm and co-

variance matrices Σ1, . . . ,ΣK ∈ Sm
++ respectively. For λ ∈ △K , the λ-weighted 2-Wasserstein barycen-

ter of Q1, . . . ,QK is given by Qλ,2 ∈ F(P0) with mean µλ ∈ Rm and covariance matrix Σλ ∈ Sm
++.

If the family of distributions in the 2-Wasserstein barycentric ambiguity set also belongs to F(P0), i.e,

W
ls

ε,2(Q1, . . . ,QK ;λ) :=
{

P ∈ F(P0) : W2(P,Qλ,2) ⩽ ε
}
, then this ambiguity set equals the Gelbrich ambiguity

set (5.2) centered at (µλ,Σλ) restricted to F(P0), i.e.,

W
ls

ε,2(Q1, . . . ,QK ;λ) = Gε(µλ,Σλ) ∩ F(P0).

Similar to WDRO (cf. Corollary B.6), we can derive the following (optimal) worst-case risk upper bounds
for 2-WBDRO with the Gelbrich risk (i.e., risk under the Gelbrich ambiguity set).

Theorem 5.4. Assume that P̂k ∈ Pac
2 (Ξ) has mean µk ∈ Rm and covariance matrix Σk ∈ Sm

++ for each
k ∈ JKK. Then, we have

(∀ℓ ∈ L) R
Wε,2(P̂1,...,P̂K ;λ)(ℓ) ⩽ RGε(µλ,Σλ)(ℓ) and R

Wε,2(P̂1,...,P̂K ;λ)(L) ⩽ RGε(µλ,Σλ)(L),

where µλ and Σλ are the mean and covariance matrix of b̂λ,2(P̂1, . . . , P̂K) respectively.

The above risk bounds indeed reveal a trade-off between tractability and the use of available information.
While the worst-case Gelbrich risk minimization problem is more tractable, it uses merely information of the
nominal distributions up to their first two moments and discards higher-order moment information.

6 Distributionally Robust Inverse Covariance Matrix Estimation

We demonstrate the proposed WBDRO via an example of sparse inverse covariance (precision) matrix
estimation with a Wasserstein barycentric ambiguity set for a Gaussian random vector ξ ∈ Rm with covariance
matrix Σ ∈ Sm

++, where n independent samples are obeserved for each of the K possibly heterogeneous data
sources. Estimation of precision matrices is of more interest than that of covariance matrices since it finds
various applications to, e.g., mean-variance portfolio optimization and linear discriminant analysis. However,
the sample covariance matrix Σ̂ is usually rank-deficient when m > n even if Σ has full rank, so näıvely
inverting Σ̂ to obtain a meaningful precision matrix estimator is not viable.

For simplicity, we assume that the unknown true distribution P⋆ has zero mean. In this case the precision
matrix is usually estimated via maximum likelihood estimation (MLE) by minimizing

f(X) := − log detX +
1

n

n∑
i=1

⟨zi, Xzi⟩

over Sm
++ with n independent samples {zi}ni=1. However, this MLE problem is unbounded for n ⩽ m. Nguyen

et al. (2022) alleviate this issue by incorporating distributional robustness using a 2-Wasserstein ambiguity

set centered at the nominal distribution N(0, Σ̂), leading to the Wasserstein Shrinkage Estimator (WSE),
which can be solved in a quasi-closed form.

With observed data from K data sources {zi,k}i∈JnK,k∈JKK, it is unclear how to construct a common
estimator using aggregate information from them even in the low-dimensional regime using the MLE approach
other than a simple weighted average. In view of this, we propose the use of WBDRO to construct a
distributionally robust aggregate estimator. We consider the Bures–Wasserstein ambiguity set centered at
the λ-weighted 2-Wasserstein barycenter Σλ of P̂n

1 , . . . , P̂
n
K , where P̂n

k = N(0, Σ̂n
k ) with empirical covariance

Σ̂n
k = 1

n

∑n
i=1 zi,kz

⊤
i,k for each k ∈ JKK. The Bures–Wasserstein ambiguity set is defined by

Bε(Σ̂) := {Q ∼ N(0,Σ) : B(Σ, Σ̂) ⩽ ε}.
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Note that Σλ also coincides the λ-weighted Bures–Wasserstein barycenter (Kroshnin et al., 2021b) of

Σ̂1, . . . , Σ̂K (see Appendix B.5). The distributionally robust maximum likelihood estimation (DRMLE)
problem can hence be formulated as

minimize
X∈Sm

+

{
− log detX + sup

P∈Bε(Σλ)

Eξ∼P[⟨ξ,Xξ⟩]

}
. (6.1)

Note that the population Wasserstein barycenter of P⋆ ∈ W2(P2(Rm)) is also Gaussian since any location-
scatter family (which includes Gaussian) is closed for Wasserstein barycenters (Álvarez-Esteban et al., 2018).
The problem (6.1) is indeed equivalent to a WDRO problem with a Wasserstein ambiguity set centered
at the Wasserstein barycenter N(0,Σλ), which also admits an analytical solution and is referred to as the
Wasserstein Barycentric Shrinkage Estimator (WBSE). Further details are given in Appendix D.

Simulations. We compare WBSE with two other estimators constructed from widely used precision matrix
estimators for single data source, namely linear shrinkage (LS) and L1-regularized maximum likelihood
estimators (L1). We choose m = 20, λ = 1/K, n ∈ {50, 100, 200}, K ∈ {25, 50, 100}, in order to observe the
effects of both the sample size n and the number of data sources K on each estimator. We generate K sparse
matrices in Sm

++ with sparsity level s = 50% as the true precision matrices Σ−1
k . The true covariance matrix

Σ⋆ is approximated by the Bures–Wasserstein barycenter of another 1000 samples of Σk′ . Then the true
precision matrix is X⋆ = (Σ⋆)−1. We then generate samples {zi,k}ni=1 from each of N(0,Σk) to construct the

empirical covariance matrices Σ̂k, which are used to compute Σλ and construct the three estimators. See
Appendix D for additional details.

We measure performance of estimators using the Stein loss L(X̂,Σ⋆) := − log det(X̂Σ⋆) + tr(X̂⊤Σ⋆) −m,

which vanishes if X̂ = (Σ⋆)−1. The losses of the estimators are given in Table 1, averaged over 20 independent
trials. We observe that WBSE outperforms the other two estimators by a large margin. The performance of
WBSE also improves as n and K increase.

Table 1: Stein losses of LS, L1 and WBSE.

n K LS L1 WBSE

25 6.77 ± 0.58 7.66 ± 0.63 1.77 ± 0.30
50 50 6.81 ± 0.43 7.72 ± 0.46 1.27 ± 0.20

100 6.91 ± 0.29 7.84 ± 0.31 0.99 ± 0.14

25 6.72 ± 0.49 7.61 ± 0.53 1.74 ± 0.27
100 50 6.76 ± 0.33 7.67 ± 0.35 1.32 ± 0.19

100 6.90 ± 0.27 7.83 ± 0.29 1.12 ± 0.16

25 6.68 ± 0.56 7.57 ± 0.60 1.76 ± 0.28
200 50 6.72 ± 0.36 7.63 ± 0.38 1.34 ± 0.21

100 6.87 ± 0.29 7.79 ± 0.31 0.62 ± 0.18

Despite being motivated by the high-dimensional setting, the proposed WBS estimator is not feasible when
n < m since all Σ̂k’s are singular and their Bures–Wasserstein barycenter Σλ does not exist, as opposed to
the applicability of WSE. A possible remedy is to consider the entropic-regularized variants of the barycenter
(Bigot et al., 2019c; Carlier et al., 2021; Janati et al., 2020b; Mallasto et al., 2021; Minh, 2022). We use the
Sinkhorn barycenter (see Appendix B) and give additional simulation results under the high-dimensional
setting in Appendix D.

7 Concluding Remarks

In this paper, we propose the use of Wasserstein barycenter in the construction of ambiguity sets in WDRO
to aggregate data samples from multiple sources. In addition to the performance guarantees established in
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this paper, extending the statistical analysis (Bartl et al., 2021; Blanchet and Kang, 2021; Blanchet et al.,
2021b,c) and generalization bounds (An and Gao, 2021) for WDRO to WBDRO are also important research
directions. Motivated by computational tractability and different use cases, alternative barycenters based on
other optimal transport distances can also be considered (Bigot et al., 2019c; Bonneel et al., 2015; Carlier
et al., 2021; Cazelles et al., 2021; Friesecke et al., 2021; Janati et al., 2020a; Kim and Pass, 2018; Li et al.,
2020; Peyré et al., 2016). The same applies to the choice of discrepancy between probability distributions in
the ambiguity set in WBDRO (Azizian et al., 2022; Wang et al., 2021b). Finally, it is also interesting to
build more general machine learning applications upon the general framework of WBDRO.
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Jason M. Altschuler and Enric Boix-Adserà. Wasserstein barycenters are NP-hard to compute. SIAM Journal
on Mathematics of Data Science, 4(1):179–203, 2022.
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Daniel Bartl, Samuel Drapeau, Jan Ob lój, and Johannes Wiesel. Sensitivity analysis of Wasserstein dis-
tributionally robust optimization problems. Proceedings of the Royal Society A, 477(2256):20210176,
2021.

11



Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. Robust
solutions of optimization problems affected by uncertain probabilities. Management Science, 59(2):341–357,
2013.

Espen Bernton, Promit Ghosal, and Marcel Nutz. Entropic optimal transport: Geometry and large deviations.
arXiv preprint arXiv:2102.04397, 2021.

Dimitris Bertsimas and Bart Van Parys. Bootstrap robust prescriptive analytics. Mathematical Programming,
2022.

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization. Mathematical
Programming, 167(2):235–292, 2018.

Rajendra Bhatia, Tanvi Jain, and Yongdo Lim. On the Bures–Wasserstein distance between positive definite
matrices. Expositiones Mathematicae, 37(2):165–191, 2019.

Jérémie Bigot and Thierry Klein. Characterization of barycenters in the Wasserstein space by averaging
optimal transport maps. ESAIM: Probability and Statistics, 22:35–57, 2018.

Jérémie Bigot, Elsa Cazelles, and Nicolas Papadakis. Central limit theorems for entropy-regularized optimal
transport on finite spaces and statistical applications. Electronic Journal of Statistics, 13(2):5120–5150,
2019a.

Jérémie Bigot, Elsa Cazelles, and Nicolas Papadakis. Data-driven regularization of Wasserstein barycenters
with an application to multivariate density registration. Information and Inference: A Journal of the IMA,
8(4):719–755, 2019b.

Jérémie Bigot, Elsa Cazelles, and Nicolas Papadakis. Penalization of barycenters in the Wasserstein space.
SIAM Journal on Mathematical Analysis, 51(3):2261–2285, 2019c.

Adrian N. Bishop. Information fusion via the Wasserstein barycenter in the space of probability measures:
Direct fusion of empirical measures and Gaussian fusion with unknown correlation. In 17th International
Conference on Information Fusion (FUSION). IEEE, 2014.

Adrian N. Bishop and Arnaud Doucet. Network consensus in the Wasserstein metric space of probability
measures. SIAM Journal on Control and Optimization, 59(5):3261–3277, 2021.

Jose Blanchet and Yang Kang. Sample out-of-sample inference based on Wasserstein distance. Operations
Research, 69(3):985–1013, 2021.

Jose Blanchet and Nian Si. Optimal uncertainty size in distributionally robust inverse covariance estimation.
Operations Research Letters, 47(6):618–621, 2019.

Jose Blanchet, Yang Kang, and Karthyek Murthy. Robust Wasserstein profile inference and applications to
machine learning. Journal of Applied Probability, 56(3):830–857, 2019a.

Jose Blanchet, Yang Kang, Karthyek Murthy, and Fan Zhang. Data-driven optimal transport cost selection
for distributionally robust optimization. In Proceedings of the Winter Simulation Conference (WSC). IEEE,
2019b.

Jose Blanchet, Lin Chen, and Xun Yu Zhou. Distributionally robust mean-variance portfolio selection with
Wasserstein distances. Management Science, 2021a.

Jose Blanchet, Karthyek Murthy, and Viet Anh Nguyen. Statistical analysis of Wasserstein distributionally
robust estimators. In Tutorials in Operations Research: Emerging Optimization Methods and Modeling
Techniques with Applications, pages 227–254. INFORMS, 2021b.

Jose Blanchet, Karthyek Murthy, and Nian Si. Confidence regions in Wasserstein distributionally robust
estimation. Biometrika, 2021c.

12



Jose Blanchet, Karthyek Murthy, and Fan Zhang. Optimal transport-based distributionally robust optimiza-
tion: Structural properties and iterative schemes. Mathematics of Operations Research, 2021d.

Emmanuel Boissard, Thibaut Le Gouic, and Jean-Michel Loubes. Distribution’s template estimate with
Wasserstein metrics. Bernoulli, 21(2):740–759, 2015.

François Bolley, Arnaud Guillin, and Cédric Villani. Quantitative concentration inequalities for empirical
measures on non-compact spaces. Probability Theory and Related Fields, 137(3-4):541–593, 2007.
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Anton Mallasto, Augusto Gerolin, and Hà Quang Minh. Entropy-regularized 2-Wasserstein distance between
Gaussian measures. Information Geometry, 2021.

Yishay Mansour, Mehryar Mohri, Jae Ro, Ananda Theertha Suresh, and Ke Wu. A theory of multiple-source
adaptation with limited target labeled data. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2021.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
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Appendix

A Other Related Work

In this section, we provide a more detailed discussion on the connections of the proposed framework to other
existing machine learning paradigms.

We now introduce some additional notation. In the following, we consider a supervised learning setting
with the input space X and the output space Y. With n samples Dn = {(xi, yi)}ni=1, the most notable
framework for building machine learning models is the ERM formulation, which solves

minimize
θ∈Θ

E(x,y)∼P̂[ℓ(hθ(x), y)] =
1

n

n∑
i=1

ℓ(hθ(xi), yi),

where hθ : X → Y represents the model with parameter θ ∈ Θ ⊆ Rd, ℓ(·, ·) is the loss function, and

P̂ := 1
n

∑n
i=1 δ(xi,yi) is the empirical distribution of Dn.

Federated Learning. Following the discussion in Section 3 of the main text, federated learning (FL) and
its optimization formulation is a crucial motivation of the problem considered in this paper. The agnostic
federated learning (AFL) framework (Mohri et al., 2019; Ro et al., 2021) considers the worst-case setting
in which the learner seeks a solution that is favorable for any λ ∈ Λ ⊆ △K , where Λ is a closed convex set.
Again, if we define the λ-mixture of distributions Pλ :=

∑K
k=1 λkPk, then the agnostic risk is given by

LPΛ
(θ) := sup

λ∈Λ
E(x,y)∼Pλ

[ℓ(hθ(x), y)].

In practice, only the empirical distributions P̂k’s are accessible (constructed from finite samples), so we can

define the λ-mixture of empirical distributions Pλ :=
∑K

k=1 λkP̂k. Then, the agnostic empirical risk is given
by

LPΛ
(θ) := sup

λ∈Λ
E(x,y)∼Pλ

[ℓ(hθ(x), y)]. (A.1)

Two notable differences between AFL and our proposed framework are that in AFL the choice of λ is also
optimized, and the use of mixture distributions instead of Wasserstein barycenters. Following this line of
work, Deng et al. (2020) develop communication-efficient distributed algorithms for minimizing the agnostic
empirical risk (A.1), whereas Reisizadeh et al. (2020) study the notion of robustness against affine distribution
drifts in clients’ data in federated learning.

On the other hand, Wasserstein distributionally robust federated learning (WAFL; Le et al., 2022) shares
a very similar spirit to our work which considers a WDRO formulation under the federated learning setting,
but again with the mixture distribution (Euclidean barycenter) usually considered in FL instead of the notion
of (entropic-regularized) Wasserstein barycenters used in this work.

Remark A.1. In this work, we however do not aim at solving the FL problem, which requires distributed
and decentralized computations. Yet, it is very interesting to make our proposed paradigm amenable to the
full federated learning setting, which might require decentralized distributed computation of Wasserstein
barycenters (Dvurechenskii et al., 2018).

(Multiple-Source) Domain Adaptation. In the multiple-source domain adaptation problem (see e.g.,
Mansour et al., 2021; Zhang et al., 2021, and references therein), each domain is defined by the corresponding
distribution Pk. The target distribution could be assumed to be close to some convex combination of source
distributions,

∑K
k=1 λkPk. The learner wants to learn a model on the target domain. Similar to the AFL

formulation, the learner can do this by solving

minimize
θ∈Θ

E(x,y)∼Pλ⋆
[ℓ(hθ(x), y)],

where λ⋆ := argminλ∈△K E(λ) for some discrepancy measure E between the empirical target distribution

P̂0 and Pλ, e.g., a Bregman divergence B(P̂0 ||Pλ). Another related work Taskesen et al. (2021b) study a
distributionally robust formulation for supervised domain adaptation with scarce labeled target data.
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Boosting. Also inspired by the agnostic loss in the AFL framework (Mohri et al., 2019), Cortes et al. (2021)
study boosting in the presence of multiple source domains. They put forward the so-called Q-ensembles,
which are convex combinations weighted by a domain classifier Q. The typical assumption that the target
distribution is a mixture of the source distributions is also made. They also provide an algorithmic extension
to the federated learning scenario. Further related work can be found in Cortes et al. (2021).

Group DRO. Machine learning models might rely on spurious correlations—misleading heuristics which
hold for most training examples but are wrongly linked to the target. Thus, these models could suffer high
risk on minority groups where these correlations do not hold. The Group DRO framework (Hu et al., 2018;
Sagawa et al., 2019), which aims to obtain high performance across all groups, minimizes the worst-group
risk :

minimize
θ∈Θ

sup
P∈Q(P1,...,PK ;λ)

Eξ∼P[ℓ(hθ(x), y)], (A.2)

where the ambiguity set is defined as Q(P1, . . . ,PK ;λ) :=
{∑K

k=1 λkPk : λ ∈ △K
}

.

Note that (A.2) is equivalent to

minimize
θ∈Θ

sup
k∈JKK

Eξ∼Pk
[ℓ(hθ(x), y)].

Since in practice we only observe the empirical distributions P̂k’s, we instead minimize the empirical
worst-group risk :

minimize
θ∈Θ

sup
k∈JKK

Eξ∼P̂k
[ℓ(hθ(x), y)],

which can be rewritten as

minimize
θ∈Θ

sup
λ∈△K

{
K∑

k=1

λkEξ∼P̂k
[ℓ(hθ(x), y)] = Eξ∼Pλ

[ℓ(hθ(x), y)]

}
.

This has an almost identical formulation to the AFL framework (A.1) above (when Λ = △K). A recent work
Carmon and Hausler (2022) study an accelerated optimization method for Group DRO.

As a work close to Group DRO, S lowik and Bottou (2022) study the relation between solving a DRO
problem and optimizing the expected error for a single distribution constructed by the mixture distribution∑K

k=1 λkPk for some λ ∈ △K , particularly with nonconvex loss functions.

B Additional Technical Details and Results

B.1 Additional Notation and Definitions

For any two matrices A := (ai,j)i∈Jd1K,j∈Jd2K and B := (bi,j)i∈Jd1K,j∈Jd2K in Rd1×d2 , we denote the Frobenius

inner product of A and B by ⟪A,B⟫F := tr(A⊤B) =
∑d1

i=1

∑d2

j=1 ai,jbi,j and the Frobenius norm of A by

|||A|||F :=
√⟪A,A⟫F. The elementwise L1-norm of A is denoted by ∥A∥1 :=

∑d1

i=1

∑d2

j=1 |ai,j |. The Lebesgue
measure over X is denoted by LX. For two probability measures µ and ν on B(X), the relative entropy or the
Kullback–Leibler (KL) divergence from µ to ν is DKL(µ || ν) :=

∫
X

log(dµ/dν) dµ if µ is absolutely continuous
w.r.t. ν (denoted by µ ≪ ν) with the Radon–Nikodym derivative dµ/dν and +∞ otherwise. The product
measure µ⊗ ν ∈ P(Rd × Rd) of µ and ν is characterized by (µ⊗ ν)(X× Y) = µ(X)ν(Y) for any pair of Borel
sets X,Y ⊂ Rd.

Definition B.1 (Sub-Gaussian measure). Let Ξ ⊆ Rm be a closed convex set. A probability measure
P ∈ Wp(Pp(Ξ)) is sub-Gaussian with variance proxy σ2 > 0 if

Eρ∼P

[
exp

{
1

2σ2
W2

p(bp(P), ρ)

}]
⩽ 2,

where ρ ∈ Pp(Ξ) is a random measure with distribution P.
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B.2 Entropic Optimal Transport

Based on computational consideration, entropic regularization has been introduced to approximate Wasser-
stein distances. The so-called entropic(-regularized) optimal transport has aroused much theoretical and
computational interests across the fields of machine learning, statistics, economics, image processing, and
theoretical and applied probability. We refer to Bernton et al. (2021); Bigot et al. (2019a); Ghosal et al. (2021);
Goldfeld et al. (2022); Nutz (2021); Nutz and Wiesel (2021) for recent theoretical advances in probability and
statistics.

In the machine learning community, Cuturi (2013) proposes the so-called Sinkhorn distance (which is
indeed not a metric), which is referred to as the entropic-p-Wasserstein distance in this paper and is the
central object in entropic optimal transport. Let us recall that Ω ⊆ Rm is a closed convex set.

Definition B.2 (Entropic-Wasserstein distance). For σ > 0, the entropic-p-Wasserstein distance between
ρ, ν ∈ P(Ω) is defined by

OTω1,ω2
p,σ (ρ, ν) := inf

π∈Π(ρ,ν)

{∫
Ω×Ω

∥x− y∥p dπ(x, y) + σDKL(π ||ω1 ⊗ ω2)

}
, (B.1)

where ω1 and ω2 are two reference measures such that ρ ≪ ω1 and ν ≪ ω2. Note that the entropic-p-
Wasserstein distance equals the p-Wasserstein distance when σ → 0.

The choice of the reference measures in (B.1) is known to induce different types of entropy bias (Janati
et al., 2020a), since in general OTω1,ω2

p,σ (ρ, ρ) ̸= 0 due to the regularization term. For example, the Lebesgue
measure (ω1 = ω2 = LRm) induces a blurring bias, whereas simply taking the product measure with ω1 = ρ
and ω2 = ν induces a shrinking bias. To circumvent the entropy bias, the p-Sinkhorn divergence (Chizat
et al., 2020; Feydy et al., 2019; Genevay et al., 2018; Luise et al., 2019; Ramdas et al., 2017) can be defined
without specifying any reference measures (Feydy et al., 2019):

Sp,σ(ρ, ν) := OTp,σ(ρ, ν) − OTp,σ(ρ, ρ) + OTp,σ(ν, ν)

2
. (B.2)

The Sinkhorn divergence can be viewed as an interpolation between the (unregularized) Wasserstein distance
(when σ → 0) and maximum mean discrepancy (MMD; when σ → ∞) (Feydy et al., 2019; Ramdas et al.,
2017). Note that there have also been lots of recent results regarding the computational efficiency guarantees
of entropic optimal transport, see e.g., Chizat et al. (2020); Genevay et al. (2019).

To avoid confusion, we reserve Sinkhorn to solely refer to notions defined via the Sinkhorn divergence
(B.2), whereas entropic-Wasserstein to solely refer to notions defined via the entropic-Wasserstein distance
(B.1).

The Gaussian Case. Similar to the (unregularized) Wasserstein distance, entropic-Wasserstein distances
and Sinkhorn divergences usually do not admit closed forms, with the notable exception for the one between
two multivariate Gaussians. The following closed form expressions of entropic-2-Wasserstein distance and
Sinkhorn divergence between two multivariate Gaussians are directly stated from Janati et al. (2020b);
Mallasto et al. (2021); Minh (2022) without proofs.

Proposition B.3. The entropic-2-Wasserstein distance between two Gaussians ρk = N(µk,Σk) with µk ∈ Rm

and Σk ∈ Sm
+ for k ∈ J2K is given by

OT⊗
2,γ(ρ1, ρ2) = ∥µ1 − µ2∥22 + tr

(
Σ1 + Σ2 − 2DΣ1,Σ2

γ

)
+

γ

2

[
m(1 − log γ) + log det(2DΣ1,Σ2

γ + γI/2)
]
,

where DΣ1,Σ2
γ := (Σ

1/2
1 Σ2Σ

1/2
1 + γ2I/16)

1/2. Then using (B.2), the Sinkhorn divergence between two Gaussians
ρk = N(µk,Σk) for k ∈ J2K is given by

S2,γ(ρ1, ρ2) = ∥µ1 − µ2∥22 + tr
(
DΣ1,Σ1

γ + DΣ2,Σ2
γ − 2DΣ1,Σ2

γ

)
+

γ

2
log det(2DΣ1,Σ2

γ + γI/2)

− γ

4

[
log det(2DΣ1,Σ1

γ + γI/2) + log det(2DΣ2,Σ2
γ + γI/2)

]
.

Note that, unlike the (squared) 2-Wasserstein distance between two Gaussians (i.e., Gelbrich distance),
the entropic-2-Wasserstein distance and the Sinkhorn divergence are both defined for degenerate Gaussians,
i.e., when (any of or both) Σ1 and Σ2 are singular.

21



B.2.1 Entropic-Wasserstein and Sinkhorn Barycenters

Similar to Wasserstein distances, Wasserstein barycenters are also NP-hard to compute in general (Altschuler
and Boix-Adserà, 2022). A potential remedy is to introduce entropic regularization, which we refer to as the
entropic-Wasserstein barycenters (Bigot et al., 2019b,c; Carlier et al., 2021; Cuturi and Doucet, 2014; Cuturi
and Peyré, 2018; Janati et al., 2020a; Kim and Pass, 2018). Recent theoretical results on entropic-Wasserstein
barycenters such as their existence and uniqueness can be found in Carlier et al. (2021). A variant of the
entropic-Wasserstein barycenter is the Sinkhorn barycenter (Janati et al., 2020a; Luise et al., 2019), defined
via the Sinkhorn divergence (B.2), in order to debias the entropic-Wasserstein barycenter due to the entropic
regularization. We give the definitions of both the empirical entropic-Wasserstein and Sinkhorn barycenters
below.

Definition B.4 (Empirical entropic-Wasserstein and Sinkhorn barycenters). For p ∈ [1,+∞) and λ =
(λk)k∈JKK ∈ △K , the λ-weighted entropic-p-Wasserstein barycenter is

b̂OT,σ
λ,p (ρ1, . . . , ρK) := argmin

ν∈P(Rm)

K∑
k=1

λkOT
⊗
p,σ(ν, ρk),

where OT⊗
p,σ(ρ, ν) ≡ OTρ,ν

p,σ(ρ, ν). Likewise, for p ∈ [1,+∞) and λ = (λk)k∈JKK ∈ △K , the λ-weighted
p-Sinkhorn barycenter is

b̂S,σλ,p(ρ1, . . . , ρK) := argmin
ν∈P(Rm)

K∑
k=1

λkSp,σ(ν, ρk).

The Gaussian Case. Unlike the unregularized case, the entropic-2-Wasserstein barycenter and Sinkhorn
barycenter of Gaussians are no longer guaranteed to be Gaussian, so we have to restrict them to the manifold
of Gaussians. Then, under this assumption, similar to the unregularized case, both the entropic-2-Wasserstein
barycenter and the Sinkhorn barycenter can be computed by solving fixed-point equations (Janati et al.,
2020b; Mallasto et al., 2021; Minh, 2022). For completeness, we state (without proof) the most general results
from Minh (2022, Theorems 11–12) below, and refer the readers to Minh (2022) for details.

Proposition B.5. Let ρ1, . . . , ρK be K possibly degenerate Gaussian distributions ρk = N(µk,Σk) with
µk ∈ Rm and Σk ∈ Sm

+ for k ∈ JKK. Their entropic-2-Wasserstein barycenter restricted to the manifold of

Gaussians is b̂OT,σ
λ,p (ρ1, . . . , ρK) = N(µλ,Σλ,σ), where µλ =

∑K
k=1 λkµk and Σλ,σ satisfies the equation

Σλ,σ =
σ

4

K∑
k=1

λk

(
−I +

(
I +

16

σ2
Σ

1/2

λ,σΣkΣ
1/2

λ,σ

)1/2)
.

Furthermore, their Sinkhorn barycenter restricted to the manifold of Gaussians is also b̂S,σλ,p(ρ1, . . . , ρK) =

N(µλ, Σ̃λ,σ) ∈ Sm
+ , where Σ̃λ,σ is the unique solution of the following equation

Σ̃λ,σ = φσ(Σ̃λ,σ)

K∑
k=1

λk

Σ
1/2
k

(
I +

(
I +

16

γ2
Σ

1/2
k Σ̃λ,σΣ

1/2
k

)1/2)−1

Σ
1/2
k

φσ(Σ̃λ,σ),

where φσ(M) :=
(
I +

(
I + 16M2/σ2

)1/2)1/2
. Furthermore, if Σ̃λ,σ ∈ Sm

++, then Σ̃λ,σ is the unique solution of

the equation

Σ̃λ,σ =
σ

4

−I +

[
K∑

k=1

λk

(
I +

16

σ2
Σ̃

1/2
λ,σΣkΣ̃

1/2
λ,σ

)1/2]21/2.
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B.3 An Example for Section 3

We now illustrate the formulation of stochastic barycentric optimization (SBO) through an example with
Gaussian distribution which admits closed form for their 2-Wasserstein barycenters. Suppose that the source
distributions are nondegenerate Gaussians, i.e., Pk = N(µk,Σk), where µk ∈ Rm and Σk ∈ Sm

+ for k ∈ JKK.
Given the assumption that the source distributions are Gaussian, the empirical distributions are instead
taken as P̂k = N(µ̂k, Σ̂k) for k ∈ JKK, where µ̂k = 1

nk

∑nk

i=1 zk,i and Σ̂k = 1
nk

∑nk

i=1(zk,i − µ̂k)(zk,i − µ̂k)⊤ are

their respective empirical means and empirical covariance matrices (which we assume to be full-rank).

Then, by Proposition B.7, the λ-weighted 2-Wasserstein barycenter of P̂1, . . . , P̂K is b̂λ(P̂1, . . . , P̂K) =
N(µλ,Σλ), where

µλ =

K∑
k=1

λkµk and Σλ = argmin
Σ∈Sm

++

K∑
k=1

λkB
2(Σ, Σ̂k).

Instead of directly minimizing the SBO objective F̂ b
λ(x) := Eξ∼b̂λ(P̂1,...,P̂K)[ℓ(x, ξ)], we first draw N

independent samples {ξ̂i}Ni=1 from N(µλ,Σλ) and then minimize the ERM objective

F̂ b
ERM(x) :=

1

N

N∑
i=1

ℓ(x, ξ̂i).

B.4 Additional Results for Section 4

Following the development of the Gelbrich ambiguity set in Section 5, we define similar notions in the case of
Wasserstein barycentric ambiguity set.

Let µ1, . . . , µK ∈ Rm and Σ1, . . . ,ΣK ∈ Sm
++. The mean-covariance barycentric ambiguity set is defined as

Ũε

(
(µk,Σk)k∈JKK;λ

)
:=

{
(µ,Σ) ∈ Rm × Sm

+ :

K∑
k=1

λkG
2((µ,Σ), (µk,Σk)) ⩽ ε2

}
.

Then, the Gelbrich barycentric ambiguity set is defined as

G̃ε

(
(µk,Σk)k∈JKK;λ

)
:=
{

Q ∈ P2(Ξ) : (EQ[ξ],CovQ(ξ)) ∈ Uε

(
(µk,Σk)k∈JKK

)}
.

Now let P,Q1, . . . ,QK ∈ P2(Ξ) with means µ, µ1, . . . , µK ∈ Rm and covariance matrices Σ,Σ1, . . . ,ΣK ∈
Sm
++ respectively. Then, by the Gelbrich bound, we have

K∑
k=1

λkW
2
2(P,Qk) ⩾

K∑
k=1

λkG
2((µ,Σ), (µk,Σk)).

The above inequality becomes an equality if P,Q1, . . . ,QK belong to the same location-scatter family.
Furthermore, this inequality implies

W̃ε,2(Q1, . . . ,QK ;λ) ⊆ G̃ε

(
(µk,Σk)k∈JKK;λ

)
.

B.5 Additional Results for Section 5

The Gelbrich bound implies the Gelbrich ambiguity set is an outer approximation of the p-Wasserstein
ambiguity set with p ⩾ 2, i.e., Wε,p(P̂) ⊆ Gε(µ̂, Σ̂) for every p ⩾ 2. This result immediately leads to an upper
bound on the (optimal) worst-case risk by the (optimal) Gelbrich risk (i.e., risk under the Gelbrich ambiguity
set; Kuhn et al., 2019; Nguyen et al., 2021a, Corollary 1).

Corollary B.6 (Worst-case risk bounds). If the nominal distribution P̂ ∈ P2(Ξ) has mean µ̂ ∈ Rm and

covariance matrix Σ̂ ∈ Sm
+ , then, for every p ⩾ 2, we have

(∀ℓ ∈ L) R
Wε,p(P̂)(ℓ) ⩽ R

Gε(µ̂,Σ̂)(ℓ) and R
Wε,p(P̂)(L) ⩽ R

Gε(µ̂,Σ̂)(L).
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We now state the following proposition from Peyré and Cuturi (2019, Remark 9.5), which is proved in
Agueh and Carlier (2011, Theorem 6.1) and previously known from Knott and Smith (1994); Rüschendorf
and Uckelmann (2002).

Proposition B.7. Let P0 ∈ Pac
2 (Rm) and Q1, . . . ,QK ∈ F(P0) with means µ1, . . . , µK ∈ Rm and covariance

matrices Σ1, . . . ,ΣK ∈ Sm
++ respectively. Then, for λ ∈ △K , the (unique) λ-weighted 2-Wasserstein barycenter

of Q1, . . . ,QK is Qλ,2 ∈ F(P0) with mean µλ ∈ Rm and covariance matrix Σλ ∈ Sm
++ given by, for each

k ∈ JKK,

µλ =

K∑
k=1

λkµk and Σλ = argmin
Σ∈Sm

++

K∑
k=1

λkB
2(Σ,Σk), (B.3)

where B(·, ·) is the Bures–Wasserstein distance (5.1). The covariance matrix Σλ can be obtained by finding
the unique positive definite fixed point of the equation

Σ =

K∑
k=1

λk

(
Σ

1/2ΣkΣ
1/2
)1/2

. (B.4)

Bures–Wasserstein Barycenter. Another important example is the Bures–Wasserstein barycenter of
Σ1, . . . ,ΣK ∈ Sm

++, defined via the Bures–Wasserstein distance, which coincides with the Wasserstein
barycenter of Q1, . . . ,QK in the same zero-mean location-scatter family with covariances Σ1, . . . ,ΣK respec-
tively, i.e., Σλ in (B.3). The issues of approximation, statistical inference and computational algorithms of
the Bures–Wasserstein barycenter can be found in Chewi et al. (2020); Kroshnin et al. (2021a,b).

B.6 An Example of Tractability Results

We now derive a tractability result from Propositions 5.3 and B.7 for nominal distributions of location-scatter
families and a quadratic loss function, similar to the one for WDRO (Kuhn et al., 2019, Theorem 16). Assume
that Ξ = Rm and consider the quadratic loss function ℓ(ξ) = ⟨ξ,Qξ⟩ + 2⟨q, ξ⟩ with Q ∈ Sm and q ∈ Rm. If

µ̂k ∈ Rm and Σ̂k ∈ Sm
+ for each k ∈ JKK, then the Gelbrich risk is equal to the optimal values of the following

tractable SDP:

RGε(µλ,Σλ)(ℓ) = inf
{
α
(
ε2 − ∥µλ∥

2
2 − tr(Σλ)

)
+ x + tr(X)

}
,

subject to α ⩾ 0, x ⩾ 0, X ∈ Sm
+ ,

(
αI −Q q + αµλ

q⊤ + αµ⊤
λ x

)
⪰ 0,

(
αI −Q αΣ

1/2

λ

αΣ
1/2

λ X

)
⪰ 0.

If for each k ∈ JKK, P̂k ∈ F(P0) for some P0 ∈ Pac
2 (Rm) with mean µ̂k ∈ Rm and covariance matrix Σ̂k ∈ Sm

++,
and p = 2, then the optimal value of the above SDP, the worst-case risk (2.3), and the Gelbrich risk all
coincide.

To verify the above claim, we assume that Q⋆ ∈ F(P0) with mean µ̂⋆ and covariance Σ̂⋆ is the extremal
distribution, i.e.,

Q⋆ = argmax
Q∈Gε(µλ,Σλ)

RQ(ℓ) and RQ⋆(ℓ) = RGε(µλ,Σλ)(ℓ).

Note that Q⋆ ∈ Wε,p(P̂1, . . . , P̂K ;λ). Then the worst-case risk satisfies

RQ⋆(ℓ) ⩽ R
Wε,p(P̂1,...,P̂K ;λ)(ℓ) ⩽ RGε(µλ,Σλ)(ℓ),

which follows from the Gelbrich bound and Theorem 5.4. Details of how to solve this SDP can be found in
Kuhn et al. (2019).
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C Proofs

C.1 Preparatory Lemmas

We first state some useful preparatory lemmas.

Lemma C.1. For 1 ⩽ p < q < ∞, we have

Wp(ρ, ν) ⩽ Wq(ρ, ν)

for any ρ, ν ∈ Pq(Ω) with Ω ⊆ Rm.

Proof of Lemma C.1. Since ∥x− y∥p is convex in ∥x− y∥ for all p ∈ [1,+∞), by Jensen’s inequality, for
p ⩽ q we have (∫

Ω×Ω

∥x− y∥p dπ(x, y)

)1/p
⩽

(∫
Ω×Ω

∥x− y∥q dπ(x, y)

)1/q
,

which implies that Wp(ρ, ν) ⩽ Wq(ρ, ν).

Lemma C.2. For a, b ∈ R+ and p ∈ [1,+∞), we have (a + b)p ⩽ 2p−1(ap + bp).

Proof of Lemma C.2. by the convexity of R+ ∋ s 7→ sp, we get(
a + b

2

)p

⩽
ap + bp

2
,

which is equivalent to (a + b)p ⩽ 2p−1(ap + bp).

C.2 Proof of Theorem 4.2

Proof of Theorem 4.2. Assume that Q1, . . . ,QK ∈ Pp(Ξ) have a λ-weighted p-Wasserstein barycenter Qλ,p,

where λ ∈ △K . Using the argument of Figalli and Glaudo (2021, Remark 3.1.2), by the triangle inequality
and Lemma C.2, for any P ∈ Pp(Ξ) and k ∈ JKK, we have

Wp
p(P,Qλ,p) ⩽

(
Wp(P,Qk) + Wp(Qλ,p,Qk)

)p
⩽ 2p−1

(
Wp

p(P,Qk) + Wp
p(Qλ,p,Qk)

)
.

This implies that

(∀P ∈ Pp(Ξ)) Wp
p(P,Qλ,p) =

K∑
k=1

λkW
p
p(P,Qλ,p)

⩽ 2p−1
K∑

k=1

λkW
p
p(P,Qk) + 2p−1

K∑
k=1

λkW
p
p(Qλ,p,Qk)

⩽ 2p−1
K∑

k=1

λkW
p
p(P,Qk) + 2p−1

K∑
k=1

λkW
p
p(P,Qk)

= 2p
K∑

k=1

λkW
p
p(P,Qk),

where the second inequality follows from the definition of the λ-weighted p-Wasserstein barycenter.
Consequently, for any ε ⩾ 0,

K∑
k=1

λkW
p
p(P,Qk) ⩽ ε =⇒ Wp

p(P,Qλ,p) ⩽ 2p · ε,

which implies the desired result.
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C.3 Proof of Theorem 4.6

Proof of Theorem 4.6. First note that the 2-Wasserstein space W2(Rm) = (P2(Rm),W2) is positively curved
in the sense of Alexandrov (Ambrosio et al., 2005, §7.3). Then, by Le Gouic et al. (2021, Theorem 12), we
have, for any β ∈ (0, 1),

Pn

{
W2

2

(
b̂1/K,2(P̂n), b̂⋆K

)
⩽

c1
n

log

(
2

β

)}
⩾ 1 − β − e−c2n,

where b̂1/K,2(P̂n) = b2(ρ̂n,K), and c1, c2 ∈ R++ are independent of n. By the definition of Wε,2(P̂n;1/K),
we also have

Pn
{
b̂⋆K ∈ Wε,2(P̂n;1/K)

}
= Pn

{
W2

(
b̂1/K,2(P̂n), b̂⋆K

)
⩽ ε
}
,

hence the desired result.

Remark C.3. Note that Adve and Mészáros (2020) provides a heuristic argument for the non-negative
curvature of Wp(Rm) when p ∈ (1, p(m)), where p(m) > 1 is close to 1 (e.g., p(m) = 1 + 1/O(m2 logm)).
Consequently, Theorem 4.6 should also hold for p ∈ (1, p(m)). For p /∈ (1, p(m)) ∪ {2}, it remains unclear
whether Wp(Rm) is positively curved even though it is expected. In this case, the general concentration
inequality in Le Gouic et al. (2021, Theorem 12) involving various abstract constants cannot be easily
simplified.

C.4 Proof of Theorem 4.7

Proof of Theorem 4.7. By Theorem 4.6, the inequality Pn
{
b̂⋆K ∈ Wε,2(P̂n;1/K)

}
⩾ 1−β−e−c2n immediately

implies that
Rb̂⋆K

(ℓ) ⩽ sup
P∈Wε,2(P̂n;1/K)

RP(ℓ) =: R
Wεn,2(P̂n;1/K)(ℓ)

with probability at least 1 − β − e−c2n, where c2 > 0 is independent of n.

C.5 Proof of Theorem 4.8

To prove Theorem 4.8, we need the following lemma which is a slight modification of Esfahani and Kuhn
(2018, Lemma 3.7).

Lemma C.4. Let K ∈ N∗ be finite and fixed. Suppose that P ∈ W2(P2(Ξ)) is sub-Gaussian, βn ∈ (0, 1)
and εn = εn(βn) ∈ R++ for n ∈ N∗, satisfies

∑∞
n=1 βn < ∞ and limn→∞ εn(βn) = 0, then any sequence

Q̂n ∈ Wεn(βn),2(P̂n;1/K), n ∈ N∗, where Q̂n may depend on the observations, converges in the W2 distance

to b̂⋆K almost surely with respect to P∞, i.e,

P∞
{

lim
n→∞

W2

(
b̂⋆K , Q̂n

)}
= 1.

Proof of Lemma C.4. For any Q̂n ∈ Wεn(βn),2(P̂n;1/K), the triangle inequality implies

W2

(
b̂⋆K , Q̂n

)
⩽ W2

(
b̂⋆K , b̂1/K,2(P̂n)

)
+ W2

(
b̂1/K,2(P̂n), Q̂n

)
⩽ W2

(
b̂⋆K , b̂1/K,2(P̂n)

)
+ εn(βn).

In addition, by Theorem 4.7, we have Pn
{
W2

(
b̂⋆K , b̂1/K,2(P̂n)

)
⩽ εn(βn)

}
⩾ 1 − βn − e−c2n, which implies

Pn
{
W2

(
b̂⋆K , Q̂n

)
⩽ 2εn(βn)

}
⩾ 1 − βn − e−c2n.

Since
∑∞

n=1 βn < ∞ and
∑∞

n=1 e−c2n < ∞ as c2 > 0, invoking the (second) Borel–Cantelli lemma (Chung,
2001, Theorem 4.2.4) yields

P∞
{
W2

(
b̂⋆K , Q̂n

)
⩽ εn(βn) for sufficiently large n

}
= 1.

Since εn(β) → 0 as n → ∞, we conclude that limn→∞ W2

(
b̂⋆K , Q̂n

)
P∞-almost surely.
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Now we are ready to prove Theorem 4.8.

Proof of Theorem 4.8. Let K ∈ N∗ be finite and fixed. Let us define

ℓ⋆n,K := argmin
ℓ∈L

R
Wε,2(P̂n;1/K) and Rb̂⋆K

(L) := inf
ℓ∈L

Rb̂⋆K
(ℓ).

Since ℓ⋆n,K ∈ L, we have Rb̂⋆K
(ℓ⋆n,K) ⩽ Rb̂⋆K

(L). Theorem 4.6 implies

Pn
{
Rb̂⋆K

(ℓ⋆n,K) ⩽ Rb̂⋆K
(L) ⩽ R

Wεn(βn),2(P̂n;1/K)(ℓ
⋆
n,K)

}
⩾ Pn

{
b̂⋆K ∈ Wεn(βn),2(P̂n;1/K)

}
⩾ 1 − β − e−c2n

for all n ∈ N∗. Since
∑∞

n=1 βn < ∞ and
∑∞

n=1 e−c2n < ∞ as c2 > 0, invoking the (second) Borel–Cantelli
lemma again yields

P∞
{
Rb̂⋆K

(ℓ⋆n,K) ⩽ Rb̂⋆K
(L) ⩽ R

Wεn(βn),2(P̂n;1/K)(ℓ
⋆
n,K) for sufficiently large n

}
= 1.

Thus, it remains to show that lim supn→∞ R
Wεn(βn),2(P̂n;1/K)(ℓ

⋆
n,K) ⩽ Rb̂⋆K

(ℓ⋆n,K) with probability one. This

part is more subtle and involves overwhelming technicalities—we refer to the proof of Esfahani and Kuhn
(2018, Theorem 3.6) as our proof follows exactly the same steps.

The second part of Theorem 4.8 follows exactly the same procedures as that of the first part. By considering
that n has already been taken to ∞, results similar to Theorems 4.6 and 4.7 also hold, by replacing n with
K, P̂n with P̂⋆, b̂⋆K with b⋆, etc.

C.6 Proof of Proposition 5.3

Proof of Proposition 5.3. Since Q1, . . . ,QK belong to the same location-scatter family F(P0) with P0 ∈
Pac

2 (Rm), so is their λ-weighted 2-Wasserstein barycenter Qλ,2, since location-scatter families are closed for

barycenters (Álvarez-Esteban et al., 2018, Theorem 3.8).
Let us recall the definition of the 2-Wasserstein ambiguity set

W
ls

ε,2(Q1, . . . ,QK ;λ) :=
{

P ∈ F(P0) : W2(P,Qλ,2) ⩽ ε
}
.

Recall that the W2 distance between two distributions of the same location-scatter family is the Gelbrich
distance, i.e., W2(P,Qλ,2) = G((µ,Σ), (µλ,Σλ)), where µ and Σ are the mean and the covariance matrix of
P ∈ F(P0) respectively. Therefore, we have

W
ls

ε,2(Q1, . . . ,QK ;λ) =
{

P ∈ F(P0) : G((µ,Σ), (µλ,Σλ)) ⩽ ε
}

=
{

P ∈ P2(Ξ) : G((µ,Σ), (µλ,Σλ)) ⩽ ε
}
∩ F(P0)

= Gε(µλ,Σλ) ∩ F(P0).

C.7 Proof of Theorem 5.4

Proof of Theorem 5.4. Let P ∈ P2(Ξ) with mean µ ∈ Rm and covariance matrix Σ ∈ Sm
+ , and let P̂1, . . . , P̂K ∈

Pac
2 (Ξ) with means µ1, . . . , µK ∈ Rm and covariance matrices Σ1, . . . ,ΣK ∈ Sm

++ respectively. By the Gelbrich
bound, we have

W2(P, b̂λ,2(P̂1, . . . , P̂K)) ⩾ G((µ,Σ), (µλ,Σλ)),

where µλ and Σλ are the mean and the covariance matrix of b̂λ,2(P̂1, . . . , P̂K). The two worst-case risk
bounds immediately follow from this inequality due to the definitions of the worst-case risk and the optimal
worst-case risk.
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C.8 Proof of Corollary B.6

Proof of Corollary B.6. The Gelbrich bound and Lemma C.1 together imply that, for any P, P̂ ∈ P2(Ξ) with

means µ, µ̂ ∈ Rm and covariance matrices Σ, Σ̂ ∈ Sm
++, we have

G((µ,Σ), (µ̂, Σ̂)) = W2(ρ, ν) ⩽ Wp(ρ, ν).

Consequently, we have the inclusion property

Wε,p(P̂) ⊆ Gε(µ̂, Σ̂)

for every p ⩾ 2. Thus, according to the definitions of the worst-case risk (2.3) and the optimal worst-case risk
(2.4), the desired results follow.

C.9 Proof of Proposition B.7

Proof of Proposition B.7. See e.g., Agueh and Carlier (2011, Theorem 6.1) and Knott and Smith (1994);
Rüschendorf and Uckelmann (2002).

D Experimental Details

In this section, we give further details about Section 6.

D.1 The Wasserstein Barycentric Shrinkage Estimator

The following theorem indicates the way to compute the solution X⋆ of the DRMLE problem (6.1).

Theorem D.1. Assume that ε > 0 and Σ̂k ∈ Sm
+ for each k ∈ JKK with all least one of the Σ̂k’s in Sm

++,

and that the λ-weighted Bures–Wasserstein barycenter Σλ of Σ̂1, . . . , Σ̂K admits the spectral decomposition
Σλ =

∑m
j=1 ζjvjv

⊤
j with eigenvalues ζj ∈ R+ and corresponding orthonormal eigenvectors vj ∈ Rm, j ∈ JmK.

Then the unique minimizer of the DRMLE problem (6.1) is given by X⋆ =
∑m

j=1 x
⋆
jvjv

⊤
j , where, for each

j ∈ JmK,

x⋆
j = χ⋆

[
1 − 1

2

(√
ζ2j (χ⋆)2 + 4ζ2j χ

⋆ − ζjχ
⋆
)]

,

and χ⋆ > 0 is the unique positive solution of the equationε2 − 1

2

m∑
j=1

ζj

χ−m +
1

2

m∑
j=1

√
ζ2j χ

2 + 4ζjχ = 0. (D.1)

Proof of Theorem D.1. According to the formulation of the DRMLE problem (6.1). The above theorem is

simply Nguyen et al. (2022, Theorem 3.1) with Σ̂ replaced by Σλ.

Recall that Σλ can be obtained by finding the unique positive definite fixed point of the equation (B.4).
Thus, to approximate the barycenter Σλ, one iterates

(∀t ∈ N∗) St+1 = S
−1/2
t

(
K∑

k=1

λk(S
1/2
t ΣkS

1/2
t )

1/2

)2
S
−1/2
t ,

which gives limt→∞ St = Σλ. Details of this iterative scheme can be found in Álvarez-Esteban et al. (2016).
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D.2 The Averaged Linear Shrinkage Estimator

A näıve estimator is constructed by simply replacing the sample covariance matrix in the widely-used linear
shrinkage estimator by the λ-weighted average of the sample covariance matrices Σ̂1, . . . , Σ̂K , defined as
follows.

Definition D.2 (Averaged linear shrinkage estimator). Given K empirical covariance matrices Σ̂1, . . . , Σ̂K ∈
Sm
++, the λ-weighted linear shrinkage estimator for the precision matrix X ∈ Sm

++ is defined by

X⋆ =

[
(1 − α)

K∑
k=1

λkΣ̂k + α

K∑
k=1

λk Diag(Σ̂k)

]−1

,

where α ∈ [0, 1], λ ∈ △K and Diag(A) is the diagonal matrix with the same diagonal of the square matrix
A ∈ Rm×m.

Let us recall that the λ-weighted average of the sample covariance matrices Σ̂1, . . . , Σ̂K is indeed the
Frobenius barycenter of Σ̂1, . . . , Σ̂K :

K∑
k=1

λkΣ̂k = argmin
Σ∈Sm

++

K∑
k=1

λk|||Σ − Σ̂k|||2F.

D.3 The Averaged L1-Regularized Maximum Likelihood Estimator

An averaged L1-regularized maximum likelihood estimator of the precision matrix can be obtained from
simply minimizing a λ-weighted loss function of the original L1-regularized maximum likelihood estimation
problem.

Definition D.3 (Averaged L1-regularized maximum likelihood estimator). Let us recall that the original
L1-regularized maximum likelihood estimation problem takes the following objective:

minimize
X∈Sm

++

g(X, Σ̂) := − log detX + ⟪Σ̂, X⟫
F

+ τ∥X∥1,

where τ ⩾ 0. Then, given K empirical covariance matrices Σ̂1, . . . , Σ̂K ∈ Sm
++, the λ-weighted L1-regularized

maximum likelihood estimator for the precision matrix X ∈ Sm
++ is defined by

X⋆ = argmin
X∈Sm

++

K∑
k=1

λkg(X, Σ̂k) = − log detX +

K∑
k=1

λk⟪Σ̂k, X⟫
F

+ τ∥X∥1 = g

(
X,

K∑
k=1

λkΣ̂k

)
,

where τ ⩾ 0 and λ ∈ △K .

D.4 The Sinkhorn Barycentric Shrinkage Estimator

The Sinkhorn Barycentric Shrinkage Estimator (SBSE) is simply an estimator similar to WBSE with the
2-Wasserstein barycenter replaced by the Sinkhorn barycenter, which is used because of the non-existence
of the 2-Wasserstein barycenter under the high-dimensional setting and computational consideration used
in simulations. Theoretical treatment of this estimator is left for future work. We do not use the entropic-
2-Wasserstein barycenter in simulations since it does not make much sense (see Minh, 2022, Remark 4).
Also recall from Proposition B.5 for the Sinkhorn barycenter of Gaussians (restricted to the manifold of
Gaussians).

D.5 Simulation Settings

All experiments were run with a laptop with Intel Core i7-7700HQ CPU (2.80 GHz) and 32GB RAM, using
Python 3.9 with libraries numpy (Harris et al., 2020), scipy (Virtanen et al., 2020) and scikit-learn
(Pedregosa et al., 2011).

The equation (D.1) is solved via the Netwon–Raphson method in scipy. We give the choice of tuning
parameters in Table 2, which are obtained based on grid search.
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Table 2: Tuning parameters of LS, L1 and WBSE.

n K α τ ε

25 0.1 0.1 0.3
50 50 0.1 0.1 0.3

100 0.1 0.1 0.3

25 0.1 0.1 0.03
100 50 0.1 0.1 0.03

100 0.1 0.1 0.03

25 0.1 0.1 0.03
200 50 0.1 0.1 0.03

100 0.1 0.1 0.005

Remark D.4. While we treat the choice of ε as a tuning parameter in simulations, in Blanchet and Si (2019),
the optimal distributional uncertainty size ε = εn is studied as a function of the sample size n for the
Wasserstein Shrinkage Estimator (Nguyen et al., 2022). Blanchet and Si (2019) prove that εn should scale
at rate εn = ε⋆n−1(1 + o(1)) = O(n−1), which aligns with the empirical findings of Nguyen et al. (2022).
This is as opposed to the theoretical rate of O(n−1/2). It is interesting to find the optimal scaling of ε in our
proposed Wasserstein Barycentric Shrinkage Estimator in terms of both n and K, and is left for future work.

E Simulations under High-Dimensional Setting

In this section, we study the performance of the proposed Sinkhorn barycentric shrinkage estimator (see
Appendix D.4) under the high-dimensional setting (m > n). Let us recall that under the high-dimensional

setting, the sample covariance matrices Σ̂k’s are all rank-deficient, so the empirical (unregularized) 2-
Wasserstein barycenter of K Gaussians does not exist. We thus resort to the Sinkhorn barycenter with
entropic regularization strength σ > 0. In particular, we choose m = 20, n ∈ {5, 10, 15}, K ∈ {25, 50, 100}
and σ = 0.1. The Stein losses of the estimators are given in Table 3, averaged over 20 independent trials.

Table 3: Stein losses of LS, L1 and SBSE.

n K LS L1 SBSE

25 7.61 ± 0.73 8.43 ± 0.79 2.72 ± 0.23
5 50 7.75 ± 0.59 8.67 ± 0.63 2.54 ± 0.21

100 7.70 ± 0.47 8.67 ± 0.51 2.43 ± 0.15

25 7.12 ± 0.69 7.99 ± 0.74 1.94 ± 0.29
10 50 7.12 ± 0.44 8.04 ± 0.47 1.37 ± 0.17

100 7.20 ± 0.35 8.15 ± 0.38 1.07 ± 0.10

25 6.96 ± 0.55 7.84 ± 0.60 1.91 ± 0.27
15 50 6.99 ± 0.40 7.90 ± 0.43 1.12 ± 0.16

100 6.97 ± 0.27 7.90 ± 0.29 0.71 ± 0.10

Similar to WBSE under the low-dimensional setting, we observe that SBSE also outperforms the other
two estimators by a large margin. The performance of SBSE also improves as n and K increase.

We also give the choice of tuning parameters in Table 4, which are obtained based on grid search.

The Effect of Entropic Regularization Strength σ in SBSE. We also numerically study how different
entropic regularization strengths in the Sinkhorn barycenter affect the performance of the proposed Sinkhorn
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Table 4: Tuning parameters of LS, L1 and SBSE.

n K α τ ε

25 0.1 0.1 1
5 50 0.1 0.1 1

100 0.1 0.1 1

25 0.1 0.1 0.5
10 50 0.1 0.1 0.5

100 0.1 0.1 0.5

25 0.1 0.1 0.3
15 50 0.1 0.1 0.3

100 0.1 0.1 0.3

barycentric shrinkage estimator. We choose m = 20, n = 5, K = 25, α = 0.1, τ = 0.1, ε = 0.8 and
σ ∈ {0.01, 0.1, 1, 10, 100}.

Table 5: Stein losses of LS, L1 and SBSE with different σ’s.

σ LS L1 SBSE

0.01 4.47 ± 0.35
0.1 2.03 ± 0.22
1 7.61 ± 0.73 8.43 ± 0.79 5.58 ± 0.36
10 9.82 ± 0.71
100 11.70 ± 0.88

We observe that, given a fixed set of (m,n,K, ε), smaller σ (i.e., closer approximation to the unregularized
2-Wasserstein barycenter) does not necessarily yield lower Stein loss. However, as the strength of entropic
regularization grows, the performance of SBSE decays sharply, which could be even worse than the averaged
linear shrinkage and averaged L1-regularized maximum likelihood estimators.
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