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The Role of Optimizers Towards AGI

• Optimization methods are the cornerstone for the success of modern large-scale
AI (Bottou et al., 2018)

• Pre-training of SOTA base models costs� hundreds of millions USD
• Scaling bottlenecks may stem from limitations in

– Data? (“fossil fuel”” of AI, yet there is only one internet)
– GPU compute? (Moore’s law is no longer valid?)
– Architecture? (Transformer and attention mechanism)

What about optimizers (training algorithms)?
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Which Optimizer Do You Use for Deep Learning?

Adam(W) is the default one
model = NeuralNet() # torch.nn.Module
params = model.parameters()

optimizer = torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01)

Update rules of Adam(W) (Kingma and Ba, 2015; Loshchilov and Hutter, 2019):

mk = β1mk−1 + (1− β1)gk , gk = ∇f (wk)

vk = β2vk−1 + (1− β2)g�2
k

m̂k =
mk

1− βk
1

v̂k =
vk

1− βk
2

wk+1 = (1− λγk)wk − γk
m̂k√
v̂k + ε
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The Impact of Adam

(retrieved Jan 19, 2026)

4/45



Adam as a Vector Preconditioned Gradient Method
• Adam’s update rules are:

mk = β1mk−1 + (1− β1)gk m̂k = mk/(1− βk
1)

vk = β2vk−1 + (1− β2)g�2
k v̂k = vk/(1− βk

2)

wk+1 = wk − γkm̂k/
(√

v̂k + ε
)

• Define a diagonal preconditioner Pk = Diag
(√

v̂k + ε
)
and denote

‖w‖P :=
√

〈w,Pw〉

wk+1 = argmin
w∈Rd

{
〈m̂k,w − wk〉+

1

2γk
‖w − wk‖2Pk

}
= wk − γkP−1

k m̂k

• Both m̂k and Pk are functions of gk ; in Gauss–Newton,∇2f (wk) ≈ gkg>k
• Majorization-minimization methods? Unclear if∇2f (wk) 4 Pk always holds
(unlikely here; Pk is just a Hessian approximation) 5/45



Adam as (Smoothed) Normalized Steepest Descent w.r.t. `∞-Norm

• signSGD (i.e., Adam with β1 = β2 = 0; Bernstein et al., 2018):

wk+1 = wk − γk · sgn(gk),

i.e., normalized steepest descent w.r.t. (squared) `∞-norm: ‖w‖∞ = max
16i6d

|wi |

• Unnormalized steepest descent w.r.t. (squared) `∞-norm (with dual norm scaling):

wk+1 = argmin
w∈Rd

{
〈gk ,w − wk〉+

1

2γk
‖w − wk‖2∞

}
= wk − γk · ‖gk‖1sgn(gk)
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Parameters are Matrices instead of Vectors

Multilayer perceptron for classification:

P(x;W ) = softmax(W`σ(W`−1σ(· · ·σ(W1x) · · · )))

• σ(·) nonlinear activation; e.g., σ(x) = ReLU(x) = max{x, 0}; bias omitted

• The size of Wi is

#neurons in previous layer× #neurons in next layer

• Parameters are predominately matrices in all architectures (e.g., fully connected
layers; QKV in transformer)
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Empirical Evidence: The AlgoPerf (Training Algorithms)
Competition

• The AlgoPerf: Training Algorithms competition (Dahl et al., 2023; Kasimbeg et al.,
2025) aims at evaluating practical speed-ups in neural network training achieved
solely by improving the underlying training algorithm

• Winner: Distributed Shampoo (Shi et al., 2023), an optimizer that does not treat
parameters and gradients as vectors

Takeaway

Results challenge belief in Adam’s optimality for deep learning
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A New Optimizer in 2024

• Blog post popularized on X, not published
• Leading author Keller Jordan joined OpenAI
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The Muon Optimizer (Jordan et al., 2024)

Muon

• Let Gk = ∇f (Wk) = UkΣkV>
k ∈ Rm×n be the SVD

• The new update:
Wk+1 = Wk − γkUkV>

k

• In practice, momentum is used: Mk = βMk−1 + (1− β)Gk

• Earlier ideas: Carlson et al. (2016); Gupta et al. (2018); Vyas et al. (2025)

• UV> is the projection of∇f (Wk) onto the semi-orthogonal space
Om×n := {A ∈ Rm×n : A>A = In or AA> = Im}

• msgn(X) := UV> extends matrix sign function for (symmetric) square matrices:
X = UΣU>, then msgn(X) coincides with U sgn(Σ)U>

10/45



The Muon Optimizer (Jordan et al., 2024)

Muon

• Let Gk = ∇f (Wk) = UkΣkV>
k ∈ Rm×n be the SVD

• The new update:
Wk+1 = Wk − γkUkV>

k

• In practice, momentum is used: Mk = βMk−1 + (1− β)Gk

• Earlier ideas: Carlson et al. (2016); Gupta et al. (2018); Vyas et al. (2025)

• UV> is the projection of∇f (Wk) onto the semi-orthogonal space
Om×n := {A ∈ Rm×n : A>A = In or AA> = Im}

• msgn(X) := UV> extends matrix sign function for (symmetric) square matrices:
X = UΣU>, then msgn(X) coincides with U sgn(Σ)U>

10/45



The Muon Optimizer (Jordan et al., 2024)

Muon

• Let Gk = ∇f (Wk) = UkΣkV>
k ∈ Rm×n be the SVD

• The new update:
Wk+1 = Wk − γkUkV>

k

• In practice, momentum is used: Mk = βMk−1 + (1− β)Gk

• Earlier ideas: Carlson et al. (2016); Gupta et al. (2018); Vyas et al. (2025)

• UV> is the projection of∇f (Wk) onto the semi-orthogonal space
Om×n := {A ∈ Rm×n : A>A = In or AA> = Im}

• msgn(X) := UV> extends matrix sign function for (symmetric) square matrices:
X = UΣU>, then msgn(X) coincides with U sgn(Σ)U>

10/45



Finding msgn(X) via Newton–Schulz Iteration

To be GPU-friendly, Jordan et al. (2024) used polynomial-based iterations to
approximate msgn(X):

• msgn(X)− p(X) = U (I − p(Σ))V>, for odd polynomial

p(X) := a1X + a3X(X>X) + · · ·+ a2q+1X(X>X)q

• Example: quintic polynomial p(x) = 15

8
x − 5

4
x3 +

3

8
x5

• Amsel et al. (2025, Polar Express) suggested approximation via compositions of
polynomials:

p? = argmin
p∈Podd

d

max
x∈[`,u]

|1− p(x)|

• Weirdly, more accurate (polynomial) approximation doesn’t yield better LLM
optimization
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Early Promising Experimental Results (Jordan et al., 2024)

Why it’s difficult to beat Adam

Neural architectures (like Transformer) may be “overfitted” to Adam’s optimization
characteristics (Orabona, 2020)
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Superiority of Muon over Adam on 16B LLMs by Moonshot (Liu
et al., 2025)

Muon is about 2×more computationally efficient than AdamW
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Questions This Talk Will Address

• Why is orthogonalization good for deep learning optimization?

• How can we improveMuon from an algorithmic perspective?

15/45



A Unifying Preconditioning Perspective on

Matrix-Gradient Methods
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Curvature Information is (Completely) Missing in Muon

Curvature information from singular values are completely gone

• Moonshot’s tuning parameters for Muon (Liu et al., 2025):

Wk+1 = Wk − 0.2γk
√

max{m,n} · msgn(Gk)

• {γk} are pre-specified
• Oscillate even if Gk → 0

Definition (Null-gradient consistency)

An optimization algorithm exhibits null-gradient consistency if the magnitude of its
update step tends to zero as the effective gradient term approaches zero
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Curvature (Partially) Recovered via Polar Decomposition

• Polar decomposition: UpH = polar(X)

– Up ∈ Om×n has orthonormal columns
– H ∈ Sn

+ is a symmetric positive semidefinite matrix

• If UΣV> = SVD(X), then Up = UV> = msgn(X) and H = VΣV>

• H contains the curvature information
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PolarGrad

• Partial curvature information can then be recovered since the nuclear norm is the
sum of singular values

• Matrix sign descent with polar decomposition of gradient:

UΣV> = SVD(G) ⇒ |||G|||nuc = tr(Σ)

tr(H ) = tr(VΣV>) = tr(V>VΣ) = tr(Σ)

PolarGrad

UkHk = polar(Gk), Wk+1 = Wk − γk tr(Hk)Uk

• Step size/learning rate matters!
19/45



It’s Muon with Armijo’s Backtracking Line Search
• Determine a learning rate αk > 0 such that:

f (Xk − αkUk) 6 f (Xk)− cαk⟪Gk ,Uk⟫F = f (Xk)− cαk |||Gk |||nuc, 0 < c < 1

• If f is L-Lipschitz smooth , then

f (Xk − αkUk) 6 f (Xk)− αk |||Gk |||nuc +
L
2
α2

krk , rk := rank(Gk)

• Hence, the learning rate satisfies

αk 6
2(1− c)

Lrk
|||Gk |||nuc

• Backtracking line search keeps αk/|||Gk |||nuc in a stable range
• Implicitly recovers the nuclear norm scaling term

Why explicit scaling in PolarGrad?

• Backtracking line search is computationally expensive and rarely used in DL

• PolarGrad makes the scaling explicit: γk tr(Hk) ≡ γk |||Gk |||nuc
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PolarGrad as Spectral-Norm-Regularized Steepest Descent

UkHk = polar(Gk), Wk+1 = Wk − γk tr(Hk)Uk

Wk − γk tr(Hk)Uk = argmin
W∈Rm×n

{
⟪Gk ,W − Wk⟫F +

1

2γk
|||W − Wk |||2S

}

• Satisfies the null-gradient consistency

• Spectral norm is submultiplicative: |||XY ||| 6 |||X ||||||Y |||, and any unitarily
invariant matrix norm satisfies |||X ||| > |||X |||S

However, Adam’s (β1 = β2 = 0) update rules for matrix parameters is

Wk+1 ∈ Argmin
W∈Rm×n

{
⟪Gk ,W − Wk⟫F +

1

2γk
|||W − Wk |||2max

}
,

where |||W |||max = max16i6m,16j6n |wi,j | is NOT a submultiplicative norm
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Matrix Preconditioned Gradient Methods

Xk+1 = Xk − γkPk(∇f(Xk)),

where Pk : Rm×n → Rm×n is a preconditioning function of the gradient

• Vector preconditioned gradient methods are curvature-aware and aim to reduce
the (local) condition number of the Hessian κ2(∇2f(X)):

Curvature-Anisotropy Preconditioning

• Another preconditioning concept for matrix optimization problems:

Gradient-Anisotropy Preconditioning

• Minimizes the condition number of the matrix-valued gradient at each step

κ2(∇f(X)) :=
σmax(∇f(X))

σmin(∇f(X))

• Orthogonal matrices are the “best conditioned” ones, with condition numbers of 1 22/45



Vector versus Matrix PGMs

• Sign descent or signSGD (Bernstein et al., 2018) (Adam with β1 = β2 = 0):

wk+1 = argmin
w∈Rd

{
〈gk,w − wk〉+

1

2γk
‖w − wk‖2∞

}
= wk − γk‖gk‖1 · sgn(gk)

• PolarGrad:

Wk+1 ∈ Argmin
W∈Rm×n

{
⟪Gk,W − Wk⟫F +

1

2γk
|||W − Wk|||2S

}
= Wk−γk|||Gk|||nuc·msgn(Gk)

• sgn: only gives entrywise sign; preconditioning effect is inconclusive;
potential cause for training instabilities

• msgn: sets all singular values to 1; maintains the original update directions given
by the singular vectors
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Convergence Analysis
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Convergence Analysis

Theorem

Suppose that f : Rm×n → R is L-Lipschitz smooth and a µ-PŁ function, then with
γk = 1/(Lrk)

f (Xk+1)− f ? 6 (1− 1/(rkκH ))(f (Xk)− f ?),
f (Xk+1)− f ? 6

(
1− 1/(κ2Gk

κH )
)
(f (Xk)− f ?),

where rk := rank(∇f (Wk)), κGk := σ1(∇f (Xk))/σrk(∇f (Xk)) , κH := L/µ

• Gradient-based rate can significantly outperform the Hessian-based rate when
κGk � rk

Theorem

Assume unbiased stochastic gradients with bounded variance ς2 ∈ (0,∞), then
f (WK )− f ? 6 O(1/K)
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Inexact Polar Oracles via

Numerical Polar Decomposition Algorithms
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msgn(X) is Only Approximated Numerically In Practice

• Recall that Muon relies on Newton–Schulz iteration (for polar decomposition of
gradient/momentum)

• In general, we can use any numerical polar decomposition algorithms (inexact
polar oracles p̂olar)

ŨkH̃k = p̂olar(Gk), Wk+1 = Wk − γk ν̃kŨk ,

where the nuclear norm scaling is computed using ν̃k := ⟪Ũk ,Gk⟫F

27/45



Alternative Numerical Polar Decomposition Algorithms

• The Polar Express (Amsel et al., 2025): polynomial iterations

• QR-based Dynamically Weighted Halley (QDWH) (Nakatsukasa and Higham,
2013): rational iterations

• ZOLO-based Polar Decomposition (ZOLO-PD) (Nakatsukasa and Freund, 2016): a
higher-order variant of QDWH

28/45



How to Choose Inexact Polar Oracles?

• Both the NS iteration and QDWH give cubic convergence of orthogonality error
ej+1 6 ζe3j for some ζ > 0, where ej := |||Ũ>

j Ũj − I |||S
• ζNS depends strongly on e0 = 1− 1/κ2(G)2 since NS is a polynomial iteration

• If G is so ill-conditioned, ζNS could be unbounded, the NS iteration loses its cubic
convergence behavior and may even diverge without additional rescaling

• ζQDWH is bounded and does not blow up as κ2(G) → ∞ because its rational part
(I + cjMj)

−1 compresses large singular values and stretches small ones

• QDWH keeps the iteration centered at the optimal cubic fixed point

• QDWH is indeed provably stable and cubically convergent even when κ2(G) = 1016

(Nakatsukasa et al., 2010)
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How to Choose Inexact Polar Oracles?

Further assume |||Ũk − Uk |||S 6 εk for some 0 6 εk < 1, and |||Ũ>
k Ũk − I |||S = O(δk)

for some δk > 0

Theorem (PolarGrad with Inexact Polar Oracles)

Running NS or QDWH for T inner steps so that Ũk = Ũk,T , we have the oracle error bounds
εmax(T) = O(e3T

0 ) and δmax(T) = O(e3T
0 ), where ek,j := |||Ũ>

k,jŨk,j − I |||S for
k ∈ {0, . . . ,K} and j ∈ {0, . . . ,T}, and e0 := maxk∈{0,...,K} ek,0. Therefore, when
running realized PolarGrad, to stay within 1− η of the exact rate for some η ∈ (0, 1), it
requires at least dO(log(log η/ log e0)e inner steps.
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How to Choose Inexact Polar Oracles?
Factors for consideration:

• Computational cost (NS has lower FLOPS)
• Required numerical precision (QDWH/ZOLO-PD requires high precision)
• Numerical stability (NS is not numerically stable for ill-conditioned gradient)
• Hardware consideration such as GPU-friendliness of involved operations (NS is
GPU-friendly)

• The complexity of the operations involved (QR decomposition or matrix inversion)

Suggestions

• NS/Polar Express: deep learning (linear and attention layers)
• QDWH:

– ill-conditioned gradient/momentummatrices
– smaller-scale matrix optimization problems on CPUs
– high precision scenarios
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Numerical Experiments
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Matrix Quadratic Regression
(
f (X) = 1
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)
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Low-Rank Matrix Completion
(
f (X ,Y ) = |||(XY> − M?)obs|||2F

)
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Qwen2.5 Pre-Training

0 2500 5000 7500 10000 12500
iteration k

4.0

4.5

5.0

5.5

6.0

tr
ai

ni
ng

lo
ss

0 2500 5000 7500 10000 12500
iteration k

102

103

104

κ
2
(∇
f

(W
em

b
ed

k
,ξ
k
))

0 2500 5000 7500 10000 12500
iteration k

102

103

104

105

κ
2
(∇
f

(W
h

ea
d

k
,ξ
k
))

AdamW

Muon + AdamW

Muon + PolarSGDM

Figure: AdamW—AdamW for all parameters; Muon+ AdamW (PolarSGDM)—Muon for
hidden layers and AdamW (PolarSGDM) for embedding and head layers
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Further Results
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Optimizers for Embedding and Head Layers

• Training runs with Muon still use Adam(W) for the input embedding and head
layers

• Amismatch from the theoretical choice of norms for steepest descent (Bernstein
and Newhouse, 2025)

• Input embedding matrix E ∈ RV×d , where V is the vocabulary size and d is the
embedding dimension with V � d

• Input embedding’s gradient GE = S>M , where S ∈ Rb×V is a sparse
token-selection matrix (one-hot), M ∈ Rb×d is a dense backpropagated signal and
b is the batch size

• GE is rank-deficient since rank(G) 6 min{b, d} � d and fluctuates with batch
composition⇒ κ2(GE) → 0

• For stochastic gradient, the small singular values are thus dominated by stochastic
noise

• Thus, for the input embedding, the NS iteration would diverge
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Optimizers for Embedding and Head Layers

• Head matrix W ∈ RV×d is even worse than token embeddings

• Head matrix’s gradient GW is driven by softmax logits with highly skewed
distributions where rare tokens get near-zero signal⇒ even more ill-conditioned
gradient

• Even though Adam does not compute a polar direction, it implicitly applies a
diagonal rational preconditioner

• However, the diagonal structure does not capture correlations across the
embedding space and completely ignores the matrix geometry

• QDWH-PolarGrad could be more desired if d is small or moderate, or QDWH is
performed infrequently and cheaper updates are kept in between
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Connecting signSGD (on Matrices) to PolarGrad

• Recover unnormalized signSGD from PolarGrad by embedding a vector variable as
a diagonal matrix

• “Matrize” w ∈ Rd as the diagonal matrix D := Diag(w) ∈ Rd×d

• Define F : Rd×d → R such that F(D) = f (diag(D)) = f (w), where diag is the
adjoint of Diag

• g := ∇f (x), G := ∇F(D) = Diag(∇f (x)) = Diag(g)
• G := Diag(g), Up = G(G>G)−1/2 = (Diag(gi/|gi |))16i6d = Diag(sgn(g))
• |||G|||nuc =

∑d
i=1 |gi | = ‖g‖1

• Hence, PolarGrad on D ⇔ unnormalized signSGD in its vector form:

Dk+1 = Dk − γk‖gk‖1 Diag(sgn(gk)) ⇔ xk+1 = xk − γk‖gk‖1sgn(gk)
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Reduction of Matrices to Vectors or Scalars in PolarGrad and
Muon

• In practice, Muon is only used for parameters of dimension> 2

• For vectors or scalars, Adam(W) is still used. Why?

• When X is a vector (m = 1 or n = 1 but not both), PolarGrad reduces to vanilla
SGD whereas Muon without momentum reduces to `2-normalized SGD

• When X is a scalar (m = n = 1), PolarGrad again reduces to vanilla SGD whereas
Muon without momentum reduces to signSGD

• Preconditioning is lost
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Concluding Remarks

• A theoretically grounded explanation for the success of Muon through the lens of
preconditioning

• A unifying preconditioning view of Muon and Adam in addition to the popular
non-Euclidean steepest descent view: Hessian vs. gradient

• Introduced PolarGrad:
– Benefit of the nuclear norm scaling term (null-gradient consistency)
– Connection to polar decomposition
– Choices of inexact polar oracles (NS vs. QDWH)

• Is matrix orthogonalization optimal?

• DNNs are trained in a BCD fashion (Zeng et al., 2019) with parallel updates:
– Different optimizers for scalar, vector, matrix and tensor parameters
– Different hyperparameters for matrix parameters of different sizes
– Architecture-optimizer co-design?
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Pre-prints

Thank you!

PolarGrad: A Class of Matrix-Gradient Optimizers from a Unifying Preconditioning
Perspective
Tim Tsz-Kit Lau, Qi Long, andWeijie Su. arXiv:2505.21799

Follow-upWork by Prof. Weijie Su

Isotropic Curvature Model for Understanding Deep Learning Optimization: Is Gradient
Orthogonalization Optimal?
Weijie Su. arXiv:2511.00674

42/45



References I

N. Amsel, D. Persson, C. Musco, and R. Gower. The Polar Express: Optimal matrix sign methods and their application to
the Muon algorithm. arXiv preprint arXiv:2505.16932, 2025.

J. Bernstein and L. Newhouse. Modular duality in deep learning. In Proceedings of the International Conference on Machine
Learning (ICML), 2025.

J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed optimisation for non-convex
problems. In Proceedings of the International Conference on Machine Learning (ICML), 2018.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. SIAM Review, 60(2):
223–311, 2018.

D. Carlson, Y.-P. Hsieh, E. Collins, L. Carin, and V. Cevher. Stochastic spectral descent for discrete graphical models. IEEE
Journal of Selected Topics in Signal Processing, 10(2):296–311, 2016.

G. E. Dahl, F. Schneider, Z. Nado, N. Agarwal, C. S. Sastry, P. Hennig, S. Medapati, R. Eschenhagen, P. Kasimbeg, D. Suo,
J. Bae, J. Gilmer, A. L. Peirson, B. Khan, R. Anil, M. Rabbat, S. Krishnan, D. Snider, E. Amid, K. Chen, C. J. Maddison,
R. Vasudev, M. Badura, A. Garg, and P. Mattson. Benchmarking neural network training algorithms. arXiv preprint
arXiv:2306.07179, 2023.

V. Gupta, T. Koren, and Y. Singer. Shampoo: Preconditioned stochastic tensor optimization. In Proceedings of the
International Conference on Machine Learning (ICML), 2018.

K. Jordan, Y. Jin, V. Boza, Y. Jiacheng, F. Cecista, L. Newhouse, and J. Bernstein. Muon: An optimizer for hidden layers in
neural networks, 2024. URL https://kellerjordan.github.io/posts/muon/. 43/45

https://kellerjordan.github.io/posts/muon/


References II

P. Kasimbeg, F. Schneider, R. Eschenhagen, J. Bae, C. S. Sastry, M. Saroufim, B. Feng, L. Wright, E. Z. Yang, Z. Nado,
S. Medapati, P. Hennig, M. Rabbat, and G. E. Dahl. Accelerating neural network training: An analysis of the AlgoPerf
competition. In International Conference on Learning Representations (ICLR), 2025.

D. P. Kingma and J. L. Ba. Adam: a method for stochastic optimization. In International Conference on Learning
Representations (ICLR), 2015.

J. Liu, J. Su, X. Yao, Z. Jiang, G. Lai, Y. Du, Y. Qin, W. Xu, E. Lu, J. Yan, Y. Chen, H. Zheng, Y. Liu, S. Liu, B. Yin, W. He, H. Zhu,
Y. Wang, J. Wang, M. Dong, Z. Zhang, Y. Kang, H. Zhang, X. Xu, Y. Zhang, Y. Wu, X. Zhou, and Z. Yang. Muon is
scalable for LLM training. arXiv preprint arXiv:2502.16982, 2025.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on Learning
Representations (ICLR), 2019.

Y. Nakatsukasa and R. W. Freund. Computing fundamental matrix decompositions accurately via the matrix sign
function in two iterations: The power of Zolotarev’s functions. SIAM Review, 58(3):461–493, 2016.

Y. Nakatsukasa and N. J. Higham. Stable and efficient spectral divide and conquer algorithms for the symmetric
eigenvalue decomposition and the SVD. SIAM Journal on Scientific Computing, 35(3):A1325–A1349, 2013.

Y. Nakatsukasa, Z. Bai, and F. Gygi. Optimizing Halley’s iteration for computing the matrix polar decomposition. SIAM
Journal on Matrix Analysis and Applications, 31(5):2700–2720, 2010.

F. Orabona. Neural networks (maybe) evolved to make Adam the best optimizer, 2020. URL https:
//parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/. 44/45

https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/


References III

H.-J. M. Shi, T.-H. Lee, S. Iwasaki, J. Gallego-Posada, Z. Li, K. Rangadurai, D. Mudigere, and M. Rabbat. A distributed
data-parallel PyTorch implementation of the distributed Shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023.

N. Vyas, D. Morwani, R. Zhao, I. Shapira, D. Brandfonbrener, L. Janson, and S. Kakade. SOAP: Improving and stabilizing
Shampoo using Adam. In International Conference on Learning Representations (ICLR), 2025.

J. Zeng, T. T.-K. Lau, S. Lin, and Y. Yao. Global convergence of block coordinate descent in deep learning. In Proceedings
of the International Conference on Machine Learning (ICML), 2019.

45/45


	References

