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The Role of Optimizers Towards AGI

e Optimization methods are the cornerstone for the success of modern large-scale
Al (Bottou et al., 2018)

e Pre-training of SOTA base models costs > hundreds of millions USD

e Scaling bottlenecks may stem from limitations in

- Data? (“fossil fuel”” of Al, yet there is only one internet)
- GPU compute? (Moore's law is no longer valid?)
- Architecture? (Transformer and attention mechanism)

2/45



The Role of Optimizers Towards AGI

e Optimization methods are the cornerstone for the success of modern large-scale
Al (Bottou et al., 2018)

e Pre-training of SOTA base models costs > hundreds of millions USD

e Scaling bottlenecks may stem from limitations in

- Data? (“fossil fuel”” of Al, yet there is only one internet)
- GPU compute? (Moore's law is no longer valid?)
- Architecture? (Transformer and attention mechanism)

What about optimizers (training algorithms)?
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Which Optimizer Do You Use for Deep Learning?

Adam(W) is the default one

model = NeuralNet() # torch.nn.Module
params = model.parameters()

optimizer = torch.optim.AdamW(params, 1r=0.001, betas=(0.9, ©0.999), eps=1e-08, weight_decay=0.01)
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Which Optimizer Do You Use for Deep Learning?

Adam(W) is the default one

model = NeuralNet() # torch.nn.Module
params = model.parameters()

optimizer = torch.optim.AdamW(params, 1r=0.001, betas=(0.9, ©0.999), eps=1e-08, weight_decay=0.01)

Update rules of Adam(W) (Kingma and Ba, 2015; Loshchilov and Hutter, 2019):
my = Bimg—1+ (1= B1)gk, gk = Vf(wk)
vp = Bovg—1 + (1 — B2)g7>

—~ mg
mp = ———
1—gf
—~ Vk
Vp = ——
1— %

M

w1 = (1 = Ayg)wg — Vkm 3/45



The Impact of Adam

Adam: A method for stochastic optimization 239553 2014
DP Kingma, J Ba
arXiv preprint arXiv:1412.6980

(retrieved Jan 19, 2026)

M ICLR

Announcing the Test of Time Award
Winners from ICLR 2015

CARL VONDRICK | ICLR 2025

We are honored to announce the Test of Time awards for ICLR 2025. This award recognizes papers
published ten years ago at ICLR 2015 that have had a lasting impact on the field. The 2025 program
chairs and general chair reviewed the papers published at ICLR 2015, and selected the two papers
below for their profound influence and impact on machine learning today.

Congratulations to the authors of the Test of Time winner and runner up!

Test of Time

Adam: A Method for Stochastic Optimization
Diederik P. Kingma, Jimmy Ba
https:/arxiv.org/abs/1412.6980
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p:2

Adam as a Vector Preconditioned Gradient Method
e Adam's update rules are:
my, = Brmig—1 + (1 — B1) gk i = my/ (1 — BY)
Uk = Bovk—1 + (1= B2)g* T = vp/(1— B5)
Wg1 = Wk — ka/ﬁk/(m+ 5)

e Define a diagonal preconditioner P;, = Diag(+/7), + ) and denote
Jwllp = /{w, Pw)

PN 1 RN

W41 = argmin {(mk, w— wg) + 2—||w - wk||i,k} = w — VP, N
weR? Yk

e Both 7 and Py, are functions of g;; in Gauss-Newton, V2f(wy,) ~ gkg,;r

e Majorization-minimization methods? Unclear if V2f(wy) < Py always holds
(unlikely here; P} is just a Hessian approximation) 5/45



Adam as (Smoothed) Normalized Steepest Descent w.r.t. /,.-Norm

e signSGD (i.e., Adam with 5; = 85 = 0; Bernstein et al., 2018):

Wg41 = Wk — Vk Sgﬂ(gk),

i.e., normalized steepest descent w.r.t. (squared) {o-norm: ||w| = max, |w;|
1<i<

e Unnormalized steepest descent w.r.t. (squared) ¢,.-norm (with dual norm scaling):

. 1 2
W1 = argmin 4 (g, w — wg) + Q—Hw — w5
weR? Yk

= wp — Yk - || gxll5gn(gr)

Pﬂ:‘
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p:2

Parameters are Matrices instead of Vectors

Multilayer perceptron for classification:

P(z; W) = softmax( Wya (Wy_10(- - o(Wiz)--+)))

e o(-) nonlinear activation; e.g., o(z) = ReLU(z) = max{z, 0}; bias omitted
e The size of W;is
#neurons in previous layer x #neurons in next layer

e Parameters are predominately matrices in all architectures (e.g., fully connected
layers; QKV in transformer)
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p:2

Empirical Evidence: The AlgoPerf (Training Algorithms)
Competition

e The AlgoPerf: Training Algorithms competition (Dahl et al., 2023; Kasimbeg et al.,
2025) aims at evaluating practical speed-ups in neural network training achieved
solely by improving the underlying training algorithm

e Winner: Distributed Shampoo (Shi et al., 2023), an optimizer that does not treat
parameters and gradients as vectors
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Empirical Evidence: The AlgoPerf (Training Algorithms)
Competition

e The AlgoPerf: Training Algorithms competition (Dahl et al., 2023; Kasimbeg et al.,
2025) aims at evaluating practical speed-ups in neural network training achieved
solely by improving the underlying training algorithm

e Winner: Distributed Shampoo (Shi et al., 2023), an optimizer that does not treat
parameters and gradients as vectors

Takeaway

Results challenge belief in Adam'’s optimality for deep learning
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p:2

A New Optimizer in 2024

Keller Jordan blog &

Muon: An optimizer for hidden layers in
neural networks

December 8, 2024 - 17 min

Muon is an optimizer for the hidden layers in neural networks. It is used in the current
training speed records for both NanoGPT and CIFAR-10 speedrunning.

. . Algorithm 2 Muon
e Blog post popularized on X, not published Require: Learning rate 7, momentum 1

e Leading author Keller Jordan joined OpenAl I: initializelBo : 0
2: fort=1,... do

Compute gradient Gy < Vg L(0:—1)
B < pBi—1+ Gy
O, + NewtonSchulz5(B;)
Update parameters 6; < 6,1 — nO;
end for
return 0,

e AR e
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The Muon Optimizer (Jordan et al., 2024)
Mwon

o Let G, = Vf(Wy) = UpS; V] € R™<" be the SVD

e The new update:
Wit1 = Wi — 1. Ui V)
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The Muon Optimizer (Jordan et al., 2024)

o Let Gy = VF(Wy) = UpS, V| € R™<" be the SVD

e The new update:
Wit1 = Wi — 1. Ui V)

e In practice, momentum is used: My = SM}_1 + (1 — ) Gy
e Earlier ideas: Carlson et al. (2016); Gupta et al. (2018); Vyas et al. (2025)

e UV isthe projection of Vf( ;) onto the semi-orthogonal space
O =LA cR™": ATA=1T,0or AAT = I,,}
e msgn(X) := UV T extends matrix sign function for (symmetric) square matrices:
X = UXUT, then msgn(X) coincides with Usgn(X)U " ojas



p:2

Finding msgn(X) via Newton-Schulz Iteration

To be GPU-friendly, Jordan et al. (2024) used polynomial-based iterations to
approximate msgn(X):
e msgn(X) — p(X) = U(I — p(X)) VT, for odd polynomial

p(X) = a X +aX(X'X)+- -+ a1 X(XTX)4

15 5 3
e Example: quintic polynomial p(z) = i 1:53 + §x5
e Amsel et al. (2025, Polar Express) suggested approximation via compositions of

polynomials:

p* = argmin max |1 — p(z)|
peP3dd z€[l,u]
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Finding msgn(X) via Newton-Schulz Iteration

To be GPU-friendly, Jordan et al. (2024) used polynomial-based iterations to
approximate msgn(X):
e msgn(X) — p(X) = U(I — p(X)) VT, for odd polynomial

p(X) = a X +aX(X'X)+- -+ a1 X(XTX)4

15 5 3
e Example: quintic polynomial p(z) = i 1:53 + §x5
e Amsel et al. (2025, Polar Express) suggested approximation via compositions of

polynomials:

p* = argmin max |1 — p(z)|
peP3dd z€[l,u]

e Weirdly, more accurate (polynomial) approximation doesn't yield better LLM
optimization /45
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Early Promising Experimental Results (Jordan et al., 2024)

Why it's difficult to beat Adam

Neural architectures (like Transformer) may be “overfitted” to Adam’s optimization
characteristics (Orabona, 2020)

“ Optimizer comparison by tokens (NanoGPT speedrun) " Optimizer comparison by time (NanoGPT speedrun)
—— Adam 139ms/step —— Adam 139ms/step
4.0 —— DistributedShampoo (Updatefreq=10) 179ms/step 4.0 —— DistributedShampoo (Updatefreq=10) ~179ms/step
—— DistributedShampoo (Updatefreq=32) ~154ms/step —— DistributedShampoo (Updatefreq=32) ~ 154ms/step
39 —— 50APx 301ms/step 3.9 —— S0APX 301ms/step
—— Muon 142ms/step —— Muon 142ms/step
@ 38 @ 3.8
° o
537 5§37
® ®
S 36 236
2 2
35 35
3.4 3.4
33 33
0.0 05 1.0 15 2.0 25 4 5 10 15 20 25
Training tokens 1e9 Wallclock time on 8xH100
“SOAP is under active ut ignifi prove the wallclock overhead. “SOAP s under active development. Future versions will significantly improve the wallclock overhead
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Early Promising Experimental Results (Jordan et al., 2024)

Why it's difficult to beat Adam

Neural architectures (like Transformer) may be “overfitted” to Adam'’s optimization
characteristics (Orabona, 2020)

NanoGPT speedrun scaled up to 1.5B parameters

3.5
—— lim.c baseline
3.4 —— +Speedrun tweaks w/ tuned Adamw
—— +Speedrun tweaks w/ Muon
3.3 —— +Speedrun tweaks w/ Muon, 25% fewer tokens
@
232
©
>
531
]
=
@ 3.0
c
£
2.9
2.8
2.7+ T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Training token lel0
Experiments sponsored by 4 Hyperbolic a g tokens 13/45



Superiority of Muon over Adam on 16B LLMs by Moonshot (Liu

et al.,, 2025)

Muon is about 2 x more computationally efficient than AdamW

3.0 80
S~ —— Muon
2.9 NS uol
~ —— Adamw
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Questions This Talk Will Address

e Why is orthogonalization good for deep learning optimization?
e How can we improve Muon from an algorithmic perspective?

15/45



A Unifying Preconditioning Perspective on
Matrix-Gradient Methods



Curvature Information is (Completely) Missing in Muon

Curvature information from singular values are completely gone

17/45



Curvature Information is (Completely) Missing in Muon

Curvature information from singular values are completely gone

e Moonshot's tuning parameters for Muon (Liu et al., 2025):

Wii1 = Wi — 0.2ygy/max{m, n} - msgn(Gy)

e {7} are pre-specified
e Oscillateevenif G, — 0

Definition (Null-gradient consistency)

An optimization algorithm exhibits null-gradient consistency if the magnitude of its
update step tends to zero as the effective gradient term approaches zero

17/45



&

Curvature (Partially) Recovered via Polar Decomposition

e Polar decomposition: U, H = polar(X)
- U, € 0™*™ has orthonormal columns
- H € S is a symmetric positive semidefinite matrix

e fUXVT = SVD(X), then Uy, = Uv'’ = msgn(X)and H = VY v
e H contains the curvature information

18/45
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PolarGrad

e Partial curvature information can then be recovered since the nuclear norm is the
sum of singular values

e Matrix sign descent with polar decomposition of gradient:
ULV =8VD(G) = ||| Gllnue = tr(X)
tr(H) = tr(VEV) =tr(VI VD) = tr(X)

PolarGrad

UpHy = polar(Gy), Wiy1 = Wi — yptr(Hy) Uy

e Step size/learning rate matters!
19/45



p:2

It's Muon with Armijo’s Backtracking Line Search

e Determine a learning rate «;, > 0 such that:
f( X — apUy) < f(Xk) — cap{( Gr, Up)p = f(Xi) — cag||Grllaue, 0 < c <1
If fis L-Lipschitz smooth, then

L
J(Xy — o Up) < f(Xi) — ol Grlllnue + §ai7’k, ry, = rank(Gy)

Hence, the learning rate satisfies (
2(1

— C
ar < 221Gy e
Tk

L

Backtracking line search keeps a. /| G || nuc in @ stable range
Implicitly recovers the nuclear norm scaling term
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It's Muon with Armijo’s Backtracking Line Search

e Determine a learning rate «;, > 0 such that:
f(Xe — apUp) < f(Xi) — cap{ Gr, Ur)p = f(Xi) — cagl| Grllnue, 0 < e <1

e If fis L-Lipschitz smooth, then

L
J(Xy — o Up) < f(Xi) — ol Grlllnue + 50%% ry, = rank(Gy)

e Hence, the learning rate satisfies ( )
2(1 —

c
Lry,
e Backtracking line search keeps o /||| G ||nuc in a stable range
e Implicitly recovers the nuclear norm scaling term

g < Il Gl e

Why explicit scaling in PolarGrad?

e Backtracking line search is computationally expensive and rarely used in DL
e PolarGrad makes the scaling explicit: v tr(Hg) = V|| Gkl nuc boyas



Pﬁ:‘
PolarGrad as Spectral-Norm-Regularized Steepest Descent &

UpHy = polar(Gy), Wiy = Wi — e tr(Hy) Uy

. 1
Wi — v tr(Hy) Uy, = argmin {({ Gy, W — Wi)p + v [|W — ka%}
WeRmXn Yk

e Satisfies the null-gradient consistency

e Spectral norm is submultiplicative: || X Y| < [|X|[[| Y|, and any unitarily
invariant matrix norm satisfies || X|| > || X|ls

21/45



&

PolarGrad as Spectral-Norm-Regularized Steepest Descent

UpHy = polar(Gy), Wiy = Wi — e tr(Hy) Uy

. 1
Wi — s tr(Hy) Uy = argmin {(( G, W= Wihp + 5| W~ ka%}

WeRmxn Tk
e Satisfies the null-gradient consistency

e Spectral norm is submultiplicative: || X Y| < [|X|[[| Y|, and any unitarily
invariant matrix norm satisfies || X|| > || X|ls

However, Adam’s (8; = 82 = 0) update rules for matrix parameters is

. 1
Wi € Arguin {(Gu W = Wil + 51 = Willhus
WeERmXn Yk

where || W||max = maxi<i<m,1<j<n |wi ;| is NOT a submultiplicative norm 2145



p:2

Matrix Preconditioned Gradient Methods

X1 = Xy, — i Pk(VH(Xy)),
where &7;,: R™*"™ — R™*™ is a preconditioning function of the gradient

e Vector preconditioned gradient methods are curvature-aware and aim to reduce
the (local) condition number of the Hessian o (V2f(X)):

Curvature-Anisotropy Preconditioning

e Another preconditioning concept for matrix optimization problems:
Gradient-Anisotropy Preconditioning

e Minimizes the condition number of the matrix-valued gradient at each step

Tmax(VF(X))

k2 (VX)) = Tenin(VE(X))

e Orthogonal matrices are the “best conditioned” ones, with condition numbers of 1 2245



p:2

Vector versus Matrix PGMs

e Sign descent or signSGD (Bernstein et al., 2018) (Adam with 8; = 82 = 0):

: 1 2
W41 = argmin § (gx, w — wg) + s—[|w — we ||, ¢ = wi — Ykl grll; - sen(gr)
weRd 271@

e PolarGrad:

. 1
Wi € Argnin {(Go, W = Wik + 2 1W = WAllE | = Wirull Gillmermsn(Go)
WERmXn Q’Yk

e sgn: only gives entrywise sign; preconditioning effect is inconclusive;
potential cause for training instabilities

e msgn: sets all singular values to 1; maintains the original update directions given
by the singular vectors

23/45



Convergence Analysis
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Convergence Analysis

Theorem
Suppose that f: R™*™ — R is L-Lipschitz smooth and a p-Pt function, then with
Ve = 1/(Lrk)

*

f( X)) = < (1= 1/(Tk"0H))(f(Xk) —f*)
f(Xpg1) = < (1 =1/ (w5 mm)) (f( B

where 13, := rank(Vf(Wy)), kq, == 01(Vf(Xk))/or,(Vf(Xk)), k= L/n

e Gradient-based rate can significantly outperform the Hessian-based rate when
Kag, K< Tk
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Convergence Analysis

Theorem
Suppose that f: R™*™ — R is L-Lipschitz smooth and a p-Pt function, then with
Ve = 1/(Lrk)
f(Xppr) =< (1= 1/(rkﬁH))(f(Xk) - f*)
f(Xpi1) = £ < (1= 1/ (w5, 60)) (f( )

where 13, := rank(Vf(Wy)), kq, == 01(Vf(Xk))/or,(Vf(Xk)), k= L/n

e Gradient-based rate can significantly outperform the Hessian-based rate when
Kag, K< Tk

Theorem

Assume unbiased stochastic gradients with bounded variance ¢ € (0, o), then
f(Wg)—f*< O(1/K) 25/45



Inexact Polar Oracles via
Numerical Polar Decomposition Algorithms

26/45



p:2

msgn(X) is Only Approximated Numerically In Practice

e Recall that Muon relies on Newton-Schulz iteration (for polar decomposition of
gradient/momentum)

e In general, we can use any numerical polar decomposition algorithms (inexact
polar oracles pgla\r)

UpHy, = polar(Gy), Wit = Wi — 1k Us,

where the nuclear norm scaling is computed using v, == << m, Gk»F

27/45



Alternative Numerical Polar Decomposition Algorithms

e The Polar Express (Amsel et al., 2025): polynomial iterations

e QR-based Dynamically Weighted Halley (QDWH) (Nakatsukasa and Higham,
2013): rational iterations

e ZOLO-based Polar Decomposition (ZOLO-PD) (Nakatsukasa and Freund, 2016): a
higher-order variant of QDWH

28/45
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How to Choose Inexact Polar Oracles?

e Both the NS iteration and QDWH give cubic convergence of orthogonality error
ejr1 < (e} for some ¢ > 0, where ¢; :== || U;" U; — I|s

e (s depends strongly on ¢g = 1 — 1/k2(G)? since NS is a polynomial iteration

e If G issoill-conditioned, (ng could be unbounded, the NS iteration loses its cubic
convergence behavior and may even diverge without additional rescaling
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How to Choose Inexact Polar Oracles?

e Both the NS iteration and QDWH give cubic convergence of orthogonality error
ejr1 < (e} for some ¢ > 0, where ¢; :== || U;" U; — I|s
e (s depends strongly on ¢g = 1 — 1/k2(G)? since NS is a polynomial iteration

e If G issoill-conditioned, (ng could be unbounded, the NS iteration loses its cubic
convergence behavior and may even diverge without additional rescaling

e (opww is bounded and does not blow up as k2 (G) — oo because its rational part
(I+ chj)*1 compresses large singular values and stretches small ones

e QDWH keeps the iteration centered at the optimal cubic fixed point

e QDWH is indeed provably stable and cubically convergent even when ro(G) = 1016
(Nakatsukasa et al., 2010)

p:2

29/45



How to Choose Inexact Polar Oracles?

Further assume || U, — Uyls < 5 for some 0 < e, < 1, and || ﬁ,;r U —I||s = 0(5)
for some d;, > 0

|
!

Theorem (PolarGrad with Inexact Polar Oracles)

Running NS or QDWH for T inner steps so that Uy = Uy, 1, we have the oracle error bounds
emax(T) = O(¢€} ) and Spax(T) = ﬁ(eo ), where e, ; = || Uk] Uk] I||s for
ke{0,...,K}andj € {0,..., T}, and ey = max;eqo,... k} eko- Therefore, when
running realized PolarGrad, to stay within 1 — 1) of the exact rate for some n € (0,1), it
requires at least [ 0 (log(logn/ log ey) ] inner steps.
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How to Choose Inexact Polar Oracles?
Factors for consideration:

Computational cost (NS has lower FLOPS)
Required numerical precision (QDWH/ZOLO-PD requires high precision)
Numerical stability (NS is not numerically stable for ill-conditioned gradient)

Hardware consideration such as GPU-friendliness of involved operations (NS is
GPU-friendly)
The complexity of the operations involved (QR decomposition or matrix inversion)

p:2
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How to Choose Inexact Polar Oracles?
Factors for consideration:
e Computational cost (NS has lower FLOPS)
Required numerical precision (QDWH/ZOLO-PD requires high precision)
Numerical stability (NS is not numerically stable for ill-conditioned gradient)

Hardware consideration such as GPU-friendliness of involved operations (NS is
GPU-friendly)
e The complexity of the operations involved (QR decomposition or matrix inversion)

Suggestions

e NS/Polar Express: deep learning (linear and attention layers)
) QDWH:

- ill-conditioned gradient/momentum matrices
- smaller-scale matrix optimization problems on CPUs
- high precision scenarios 31745



Numerical Experiments
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f(X) —

Matrix Quadratic Regression (f(X) = 3||AXB — C||})

10°
107
10°
103
101 -
107!
0 1000 '2000 3000 4000
iteration k
—== PolarGrad - PolarGrad (Ir |)

1 109
1
1
SiiE
Do 3
5 F S
= B o
= ph T LR
g [ i J
VU
10T | 10!
a\\- ; e
R i -
e
0 1000 2000 3000 4000 0 1000 2000 3000 4000
iteration k iteration k
-== Muon - Muon (Ir |)  —— Newton (V?*f(X;)™') —— Adam - Adam (Ir |)
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Low-Rank Matrix Completion (f(X, Y) = [[(XY" — M,)obs||?)

20

10°

1072 R

— 107 v
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<107 %

1078 \ X
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10-10

10712
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400 600 800 1000
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| i i i | I
200 400 600 800 1000 0 200
iteration k
—— Muon === Muon (Ir |) === Adam (Ir |)

0 200 400 600 800 1000 0
iteration k
—— PolarGrad === PolarGrad (Ir |)
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training loss

Qwen2.5 Pre-Training

6.0 T T T
| —— AdamW
~—— Muon + AdamW
4 5 4
5.5+ 10 10 —— Muon + PolarSGDM
5 3 s
0 © 210t
=0 =
= =
45 = L
E €8 n |
40 102
| ] SR DO Nt vwuu uat IR S A W s emmse
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500
iteration A iteration k& iteration k&

Figure: AdamW—AdamW for all parameters; Muon + AdamW (PolarSGDM)—Muon for
hidden layers and AdamW (PolarSGDM) for embedding and head layers
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Further Results
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p:2

Optimizers for Embedding and Head Layers

e Training runs with Muon still use Adam(W) for the input embedding and head
layers

e A mismatch from the theoretical choice of norms for steepest descent (Bernstein
and Newhouse, 2025)
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e Input embedding matrix £ € RV *¢, where V is the vocabulary size and d is the
embedding dimension with V' > d
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p:2

Optimizers for Embedding and Head Layers

Training runs with Muon still use Adam(W) for the input embedding and head
layers

A mismatch from the theoretical choice of norms for steepest descent (Bernstein
and Newhouse, 2025)

Input embedding matrix E € RV*¢, where V is the vocabulary size and d is the
embedding dimension with V' > d

Input embedding’s gradient Gz = ST M, where S € R®V is a sparse
token-selection matrix (one-hot), M € R?*? is a dense backpropagated signal and
b is the batch size

G is rank-deficient since rank(G) < min{b, d} < d and fluctuates with batch
composition = ko(Gg) — 0

For stochastic gradient, the small singular values are thus dominated by stochastic
noise

37/45

Thus, for the input embedding, the NS iteration would diverge



p:2

Optimizers for Embedding and Head Layers

e Head matrix W € RV*4 is even worse than token embeddings

e Head matrix’'s gradient Gy is driven by softmax logits with highly skewed
distributions where rare tokens get near-zero signal = even more ill-conditioned

gradient
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p:2

Optimizers for Embedding and Head Layers

e Head matrix W € RV*4 is even worse than token embeddings

e Head matrix’'s gradient Gy is driven by softmax logits with highly skewed
distributions where rare tokens get near-zero signal = even more ill-conditioned
gradient

e Even though Adam does not compute a polar direction, it implicitly applies a
diagonal rational preconditioner

e However, the diagonal structure does not capture correlations across the
embedding space and completely ignores the matrix geometry

e QDWH-PolarGrad could be more desired if d is small or moderate, or QDWH is
performed infrequently and cheaper updates are kept in between

38/45
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Connecting signSGD (on Matrices) to PolarGrad

e Recover unnormalized signSGD from PolarGrad by embedding a vector variable as
a diagonal matrix

e “Matrize” w € R? as the diagonal matrix D := Diag(w) € R¢*¢

e Define F': R4*? — Rsuch that F(D) = f(diag(D)) = f(w), where diag is the
adjoint of Diag

e g:=Vf(z), G =VF(D)=Diag(Vf(z)) = Diag(g)

o G :=Diag(g), Up = G(GT @)~ = (Diag(gi/|9]))1<i<a = Diag(sgn(g))

o 1 Glle = 354 Lil = liglly

e Hence, PolarGrad on D < unnormalized signSGD in its vector form:

Dyy1 = Dy — villgkll; Diag(sgn(gr)) < k1 = 2% — vellgrll1sgn(gr)
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Reduction of Matrices to Vectors or Scalars in PolarGrad and
Muon

e In practice, Muon is only used for parameters of dimension > 2

e For vectors or scalars, Adam(W) is still used. Why?
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p:2

Reduction of Matrices to Vectors or Scalars in PolarGrad and
Muon

e In practice, Muon is only used for parameters of dimension > 2
e For vectors or scalars, Adam(W) is still used. Why?

e When X is a vector (m = 1 or n = 1 but not both), PolarGrad reduces to vanilla
SGD whereas Muon without momentum reduces to ¢/5-normalized SGD

e When X is a scalar (m = n = 1), PolarGrad again reduces to vanilla SGD whereas
Muon without momentum reduces to signSGD

e Preconditioning is lost
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Concluding Remarks

e A theoretically grounded explanation for the success of Muon through the lens of
preconditioning

e A unifying preconditioning view of Muon and Adam in addition to the popular
non-Euclidean steepest descent view: Hessian vs. gradient
e Introduced PolarGrad:

- Benefit of the nuclear norm scaling term (null-gradient consistency)
- Connection to polar decomposition
- Choices of inexact polar oracles (NS vs. QDWH)

e |s matrix orthogonalization optimal?
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Concluding Remarks

e A theoretically grounded explanation for the success of Muon through the lens of
preconditioning

A unifying preconditioning view of Muon and Adam in addition to the popular
non-Euclidean steepest descent view: Hessian vs. gradient
Introduced PolarGrad:

- Benefit of the nuclear norm scaling term (null-gradient consistency)
- Connection to polar decomposition
- Choices of inexact polar oracles (NS vs. QDWH)

Is matrix orthogonalization optimal?
DNNs are trained in a BCD fashion (Zeng et al., 2019) with parallel updates:

- Different optimizers for scalar, vector, matrix and tensor parameters
- Different hyperparameters for matrix parameters of different sizes
- Architecture-optimizer co-design?
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Pre-prints

Thank you!

PolarGrad: A Class of Matrix-Gradient Optimizers from a Unifying Preconditioning

Perspective
Tim Tsz-Kit Lau, Qi Long, and Weijie Su. arXiv:2505.21799

Follow-up Work by Prof. Weijie Su

Isotropic Curvature Model for Understanding Deep Learning Optimization: Is Gradient
Orthogonalization Optimal?
Weijie Su. arXiv:2511.00674
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